Alexander Grothendieck.docx
- 文档编号:24650265
- 上传时间:2023-05-29
- 格式:DOCX
- 页数:11
- 大小:23.94KB
Alexander Grothendieck.docx
《Alexander Grothendieck.docx》由会员分享,可在线阅读,更多相关《Alexander Grothendieck.docx(11页珍藏版)》请在冰豆网上搜索。
AlexanderGrothendieck
AlexanderGrothendieck; French:
;28March1928–13November2014)wasaFrenchmathematician,borninGermany,raisedandlivingprimarilyin France,andwhospentmuchofhisworkinglife stateless,whoisthecentralfigurebehindthecreationofthemoderntheoryof algebraicgeometry.Hisresearchprogramvastlyextendedthescopeofthefield,incorporatingmajorelementsof commutativealgebra,homologicalalgebra, sheaftheory,and categorytheory intoitsfoundations.Thisnew perspective ledtorevolutionaryadvancesacrossmanyareasofpuremathematics.Heconsistentlyspelthisfirstname"Alexander"ratherthantheFrench"Alexandre"; hisfamilyname,"Grothendieck"(fromhismother)is LowGerman,whichissimilarto Dutch,henceheissometimesmistakenlybelievedtobeofDutchorigin.
Afteraveryproductivepublicmathematicalcareerlasting1949–1970,particularly1958–1970(whenhewasatIHES),Grothendiecklargelyceasedmathematicalactivityafter1970(age42),thoughwithsomeprivatework1970–1988.Drivenbydeeppersonalandpoliticalconvictions,Grothendieckleftthe InstitutdesHautesÉtudesScientifiques,wherehehadbeenappointedprofessorandaccomplishedhisgreatestwork,afteradisputeovermilitaryfundingin1970.Hismathematicalactivityessentiallyceasedafterthis,andhedevotedhisenergiestopoliticalcauses,thoughhedidproducesomemathematicalworkprivately.Heformallyretiredin1988andwithinafewyearsmovedtothe Pyrenees,wherehelivedinisolationfromhumansocietyuntilhisdeathin2014.
Influence
Within algebraicgeometry itself,histheoryof schemes isusedintechnicalwork.His generalization oftheclassical Riemann-Rochtheorem startedthestudyof algebraic and topologicalK-theory.Hisconstructionofnew cohomology theorieshasleftconsequencesfor algebraicnumbertheory, algebraictopology,and representationtheory.Hiscreationof topostheory hasappearedin settheory and logic.
Oneofhisresultsisthediscoveryofthefirstarithmetic Weilcohomology theory:
the $\ell$-adicétalecohomology.Thisresultopenedthewayforaproofofthe Weilconjectures,ultimatelycompletedbyhisstudent PierreDeligne.Tothisday, $\ell$-adiccohomology remainsafundamentaltoolfornumbertheorists,withapplicationstothe Langlandsprogram.
Grothendieckinfluencedgenerationsofmathematiciansafterhisdeparturefrommathematics.Hisemphasisontheroleof universalproperties brought categorytheory intothemainstreamasanorganizingprinciple.Hisnotionof abeliancategory isnowthebasicobjectofstudyin homologicalalgebra.Hisconjecturaltheoryof motives hasbeenbehindmoderndevelopmentsin algebraicK-theory, motivichomotopytheory,and motivicintegration.
Life
Familyandchildhood
AlexanderGrothendieckwasbornin Berlin to anarchist parents:
afatherfromanoriginally Hassidic family, Alexander"Sascha"Schapiro akaTanaroff,whohadbeenimprisonedinRussiaandmovedtoGermanyin1922,andamotherfroma Protestant familyin Hamburg,Johanna"Hanka"Grothendieck,whoworkedasajournalist;bothofhisparentshadbrokenawayfromtheirearlybackgroundsintheirteens. AtthetimeofhisbirthGrothendieck'smotherwasmarriedtothejournalistJohannesRaddatz,andhisbirthnamewasinitiallyrecordedas AlexanderRaddatz.Themarriagewasdissolvedin1929andSchapiro/Tanaroffacknowledgedhispaternity,butnevermarriedHankaGrothendieck.
Grothendiecklivedwithhisparentsuntil1933inBerlin.Attheendofthatyear,Schapiromovedto Paris toevadethe Nazis,andHankafollowedhimthenextyear.TheyleftGrothendieckinthecareofWilhelmHeydorn,a Lutheran Pastor andteacher in Hamburg wherehewenttoschool.Duringthistime,hisparentstookpartinthe SpanishCivilWar insupportingratherthanfightingroles. Grothendieckcouldspeak French, English and German.
WorldWarII
In1939GrothendieckwenttoFranceandlivedinvariouscampsfordisplacedpersonswithhismother.Theylivedfirstatthe CampdeRieucros,andlater,fortheremainderof WorldWarII,inthevillageof LeChambon-sur-Lignon.Therehewasshelteredandhiddeninlocalboarding-housesorpensions.Hisfatherwasarrestedandsentvia Drancy tothe Auschwitzconcentrationcamp,wherehediedin1942.InChambon,GrothendieckattendedtheCollègeCévenol(nowknownasthe LeCollège-LycéeCévenolInternational),auniquesecondaryschoolfoundedin1938bylocalProtestantpacifistsandanti-waractivists.ManyoftherefugeechildrenhiddeninChambonattendedCévenol,anditwasatthisschoolthatGrothendieckapparentlyfirstbecamefascinatedwithmathematics.
Studiesandcontactwithresearchmathematics
Afterthewar,theyoungGrothendieckstudiedmathematicsinFrance,initiallyatthe UniversityofMontpellier wherehedidnotinitiallyperformwell,flunkingsuchclassesasastronomy.Workingonhisown,herediscoveredthe Lebesguemeasure.AfterthreeyearsofincreasinglyindependentstudiestherehewenttocontinuehisstudiesinParisin1948.
Initially,Grothendieckattended HenriCartan'sSeminarat ÉcoleNormaleSupérieure,butlackedthenecessarybackgroundtofollowthehigh-poweredseminar.OntheadviceofCartanand Weil,hemovedtothe UniversityofNancy wherehewrotehisdissertationunder LaurentSchwartz infunctionalanalysis,from1950to1953.Atthistimehewasaleadingexpertinthetheoryoftopologicalvectorspaces.By1957,hesetthissubjectasideinordertoworkinalgebraicgeometryand homologicalalgebra.
TheIHÉSyears
Installedatthe InstitutdesHautesÉtudesScientifiques (IHÉS)in1958,Grothendieckattractedattentionbyanintenseandhighlyproductiveactivityofseminars(defacto workinggroupsdraftingintofoundationalworksomeoftheablestFrenchandothermathematiciansoftheyoungergeneration).Grothendieckhimselfpracticallyceasedpublicationofpapersthroughtheconventional, learnedjournal route.Hewas,however,abletoplayadominantroleinmathematicsforaroundadecade,gatheringastrongschool.
Duringthistimehehadofficiallyasstudents MichelDemazure (whoworkedonSGA3,on groupschemes), LucIllusie (cotangentcomplex), MichelRaynaud, Jean-LouisVerdier (cofounderofthederivedcategory theory)and PierreDeligne.CollaboratorsontheSGAprojectsalsoincluded MikeArtin (étalecohomology)and NickKatz (monodromytheory and Lefschetzpencils). JeanGiraudworkedout torsor theoryextensionsof non-abeliancohomology.Manyotherswereinvolved.
The"GoldenAge"
AlexanderGrothendieck'sworkduringthe"GoldenAge"periodat IHÉS establishedseveralunifyingthemesin algebraicgeometry, numbertheory, topology, categorytheory and complexanalysis.Hisfirst(pre-IHÉS)discoveryinalgebraicgeometrywasthe Grothendieck–Hirzebruch–Riemann–Rochtheorem,ageneralisationofthe Hirzebruch–Riemann–Rochtheorem provedalgebraically;inthiscontexthealsointroduced K-theory.Then,followingtheprogrammeheoutlinedinhistalkatthe1958 InternationalCongressofMathematicians,heintroducedthetheoryof schemes,developingitindetailinhis Élémentsdegéométriealgébrique (EGA)andprovidingthenewmoreflexibleandgeneralfoundationsforalgebraicgeometrythathasbeenadoptedinthefieldsincethattime.Hewentontointroducethe étalecohomology theoryofschemes,providingthekeytoolsforprovingthe Weilconjectures,aswellas crystallinecohomology andalgebraic deRhamcohomology tocomplementit.Closelylinkedtothesecohomologytheories,heoriginated topos theoryasageneralisationoftopology(relevantalsoin categoricallogic).Healsoprovidedanalgebraicdefinitionof fundamentalgroups ofschemesandmoregenerallythemainstructuresofacategorical Galoistheory.Asaframeworkforhis coherentduality theoryhealsointroducedderivedcategories,whichwerefurtherdevelopedbyVerdier.
TheresultsofworkontheseandothertopicswerepublishedintheEGAandinlesspolishedforminthenotesofthe Séminairedegéométriealgébrique (SGA)thathedirectedatIHES.
Politicsandretreatfromscientificcommunity[edit]
Grothendieck'spoliticalviewswere radical and pacifist.Thus,hestronglyopposedboth UnitedStates interventioninVietnam and Sovietmilitaryexpansionism.Hegavelectureson categorytheory intheforestssurrounding Hanoi whilethecitywasbeingbombed,toprotestagainstthe VietnamWar.[13] Heretiredfromscientificlifearound1970,afterhavingdiscoveredthepartlymilitaryfundingof IHÉS.[14] Hereturnedtoacademiaafewyearslaterasaprofessoratthe UniversityofMontpellier,wherehestayeduntilhisretirementin1988.Hiscriticismsofthescientificcommunity,andespeciallyofseveralmathematicscircles,arealsocontainedinaletter,writtenin1988,inwhichhestatesthereasonsforhisrefusalofthe CrafoordPrize.[15] Hedeclinedtheprizeonethicalgroundsinanopenlettertothemedia.[16]
WhiletheissueofmilitaryfundingwasperhapsthemostobviousexplanationforGrothendieck'sdeparturefromIHÉS,thosewhoknewhimsaythatthecausesoftherupturerandeeper. PierreCartier,a visiteurdelonguedurée ("long-termguest")attheIHÉS,wroteapieceaboutGrothendieckforaspecialvolumepublishedontheoccasionofthe IHÉS'sfortiethanniversary.TheGrothendieckFestschrift wasathree-volumecollectionofresearchpaperstomarkhissixtiethbirthday(fallingin1988),andpublishedin1990.[17]
InitCartiernotesthat,asthesonofanantimilitaryanarchistandonewhogrewupamongthedisenfranchised,Grothendieckalwayshadadeepcompassionforthepoorandthedowntrodden.AsCartierputsit,GrothendieckcametofindBures-sur-Yvette"unecagedorée
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Alexander Grothendieck