大棚温度自动控制系统设计.docx
- 文档编号:24600065
- 上传时间:2023-05-29
- 格式:DOCX
- 页数:52
- 大小:1MB
大棚温度自动控制系统设计.docx
《大棚温度自动控制系统设计.docx》由会员分享,可在线阅读,更多相关《大棚温度自动控制系统设计.docx(52页珍藏版)》请在冰豆网上搜索。
大棚温度自动控制系统设计
温室大棚温度PLC控制系统设计
摘要
温室,是用来栽培植物的设施,它能改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的条件。
随着科学技术的迅速发展,农业应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。
如何利用科学技术有效地控制温室的各种环境因数,以提高温室大棚环境的控制效果,已成为目前我国温室业研究的重点课题之一。
这对我国温室产业的发展有着不可估量的重要意义。
本文主要介绍了基于西门子公司S7-200系列的可编程控制器(PLC)和MCGS组态软件的温室大棚温度PLC控制系统设计方案。
该研究中,将采用温度传感器、光照传感器、CO2浓度传感器对温室中各项环境指标进行检测,并将测量值送入PLC中,由PLC将其与设定值进行比较,再发出相应的指令驱动执行设备来调节温室的环境参数,从而实现温室的智能化、自动化控制。
在此基础上,采用MCGS组态软件完成了控制系统的组态设计,实现了动态演示、过程监测、数据记录、曲线显示等功能,从而实现了控制系统操作的人性化和过程的可视化,为温室大棚的发展提供了新的方向。
关键词:
温室,环境,控制,可编程控制器,组态
第一章绪论
1.1课题概述
1.1.1课题简介
温室又称暖房,是用来栽培植物的设施。
温室的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的条件。
温室环境指的是作物在地面上的生长空间,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。
温室控制主要是通过控制温室的温度、湿度、通风与光照,使得它可以在冬季或其他不适宜植物露地生长的季节栽培植物,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。
现代化温室中具有控制温湿度、光照等条件的设备,并采用电脑进行自动控制,以此创造植物生长所需的最佳环境条件。
1.1.2研究目的及意义
我国的设施园艺绝大部分用于蔬菜生产。
80年代以来,温室、大棚蔬菜的种植面积连年增加。
目前的栽培设施中,有国家标准的装配式钢管塑料大棚和玻璃温室仅占设施栽培面积的少部分,大多数的农村仍然采用自行建造的简单低廉的竹木大小棚,只能起到一定的保温作用,根本谈不上对温光水气养分等环境条件的调控,抗自然环境的能力极差。
即使那些数量不多的装配式塑料大棚和玻璃温室也缺乏配套的调控设备和仪器,仅仅依靠经验和单因子定性调控,所以,我国设施栽培的智能化程度非常低。
除此之外,我国设施农业目前还存在着诸如土地利用率低、盲目引进温室、设施结构不合理、能源浪费严重、运营管理费用高、管理技术水平低、劳动生产率低及单位面积产量低等诸多问题。
中国农业想要发展,就必须走现代化农业这条道路。
随着国民经济的迅速发展,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。
现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。
在实际的农业种植中,温室环境与生物的生长、发育、能量交换等有着密切的关系。
作为实现温室生产管理自动化、科学化的基本保证,环境测控可通过对监测数据的分析,并结合作物生长发育规律,从而控制环境条件,使作物达到优质、高产、高效的栽培目的。
实际上生产生活中,以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。
目前,虽然国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。
而当今国大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。
因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚温度、湿度以及二氧化碳的含量,使大棚形成有利于蔬菜、水果生长的环境。
现阶段随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。
随着社会的进步和科学的发展,我国设施农业将向着地域化、节能化、专业化发展,向着高科技、自动化、机械化、规模化、产业化的工厂型农业发展,为社会提供更加丰富的无污染、安全、优质的绿色健康食品。
所以,进行温室大棚温度PLC控制系统的研究设计具有重要的现实意义。
本课题通过对PLC可编程控制器、组态软件、传感器、数据采集系统的学习与研究,完成了利用西门子PLC与PC机构组成温室大棚温度监控系统。
1.2国外研究现状
1.2.1国研究现状
我国现代温室技术起步较晚,80年代以来,政府大力发展以塑料大棚、节能日光温室为主的设施农业,促进了农村经济的发展和缓和了蔬菜季节性短缺矛盾。
其中能充分利用太热资源、节约燃煤、减少环境污染的日光温室为我国所特有。
1997年我国日光温室面积已超过近16.7万公顷。
由农业部联合有关部门试验推广的新一代节能型日光温室,每年每亩可节约燃煤约20吨。
随后,以单层薄膜或双层冲气薄膜、PC板、玻璃为覆盖材料的大型现代化连栋温室,以其土地利用率高、环境控制自动化程度高和便于机械化操作等优点,自1995年以来,便呈现出迅猛的发展之势,目前全国共有大型温室面积200公顷,其中自日本、荷兰、以色列、美国等国家引进的温室面积达140公顷。
最初,我国的现代温室技术主要从国外引进,然而近几年从国外引进的温室大部分经营亏损,目前已处于停产状态或仅仅利用其玻璃的外壳。
随着温室面积的不断增加,温室建造的国产化问题越来越引起人们的重视。
目前,现代化大型温室的骨架和覆盖材料国产化已经基本不成问题,但其部的配套设施和计算机管理系统等现代化管理方法与先进国家相比还有较大的差距,是今后要着力解决的问题。
在温室环境自动监控中,各环境参数分别由各自的闭环系统控制,但由于这些受控参数常常相互影响,如光照增加,室温相应增加,温度的升高,又造成温室相对湿度降低,同时各系统间并不完全独立,回路间相互耦合时可能导致系统不稳而失控,这里可采用模糊控制方法,可较好地解决环境参数之间的相互影响。
另外,以前在监控系统的研制开发中,主要针对环境,而很少考虑农业生产过程中的生物因素,没有农业专家的合作参与,很难对系统正确定位,其适应性也差。
所以,将农业学科与工程学科结合起来,对果蔬生长的环境参数进行优化设计,对于开发经济有效的温室监控软件系统是非常重要的。
近年来我国的温室控制取得了长足的进步,首先在温室群控制方面,进行了初步的探索和理论研究,其次在温室控制中引入了人工智能和先进的控制算法,如专家系统、遗传算法、模糊控制等理论和控制策略。
当前温室控制系统研究热点己由简单的DDC(直接数字控制)发展到分布式控制系统,如DCS(分布式控制)、FCS(柔性控制)等网络化的控制系统。
目前,在相关行业己经有网络化测量和控制方面的研究,实现网络化、分布式数据采集系统取代传统孤立的、信息闭塞的系统,甚至跨越以太网或Internet进行数据采集,实施远程控制。
虽然国温室规模有限,还没有形成规模经济,另外构建的费用也较高,但从长远来看,温室监控系统分布式和网络化将是一种必然的趋势。
现代温室中常见的能自动控制的调控机构有:
顶部通风窗、侧面通风窗、外遮阳帘幕、遮阳帘幕、轴流通风机、降温湿帘、人工补光灯、二氧化碳施肥器、加热设备、喷雾系统及熏蒸设备。
控制器综合调节各个机构,使系统在运行中节约能源的同时保证室气候满足植物生长需求。
使用的控制器可以有很多选择,如单片机、工控机、PLC、通用PC机等。
1.2.2国外研究现状
西方发达国家在现代温室测控技术上起步比较早。
1949年,借助于工程技术的发展,美国建成了第一个植物人工气候室,开展了植物对自然环境的适应性和抗御能力的基础及应用研究。
20世纪60年代,生产型的高级温室开始应用于农业生产,奥地利首先建成了番茄生产工厂,70年代后荷兰、日本、美国、英国、以色列等国家的温室园艺迅猛发展,温室设施广泛应用于园艺作物生产、畜牧业和水产养殖业。
随着计算机技术的进步和智能控制理论的发展,近百年来,温室大棚作为设施农业的重要组成部分,其自动控制和管理技术不断得以提高,在世界各地都得到了长足的发展。
特别是二十世纪70年代电子技术的迅猛发展和微型计算机的出现,更使温室大棚环境控制技术产生了革命性的变化。
80年代,随着微型计算机日新月异的进步和价格大幅度下降,以及对温室控制要求的提高,以微机为核心的温室综合环境控制系统,在欧美得到了长足的发展,并迈入了网络化、智能化阶段。
目前,国外现代化温室的部设施己经发展到比较完备的程度,并形成了一定的标准。
温室的各环境因子大多由计算机集中控制,检测传感器也较为齐全,如温室外的温度、湿度、光照度、二氧化碳浓度、营养液浓度等,由传感器的检测基本上可以实现对各个执行机构的自动控制,如无级调节的天窗通风系统,湿帘与风扇配套的降温系统,由热水锅炉或热风机组成的加温系统,可定时喷灌或滴灌的灌溉系统,二氧化碳施肥系统,以及适用于温室作业的农业机械等。
计算机对这些系统的控制己经不是简单的、独立的、静态的直接数字控制,而是基于环境模型上的监督控制,以及基于专家系统上的人工智能控制,一些国家在实现自动化的基础上正在向着完全自动化、无人化的方向发展。
1.3研究容
可编程控制器(PLC)是集计算机技术、自动控制技术和通信技术为一体的新型自动控制装置。
其性能优越,已被广泛应用于工业控制的各个领域,并已成为工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)之一。
PLC的应用已成为一个世界潮流,在不久的将来PLC技术在我国将得到更全面的推广和应用。
本论文研究的是PLC技术在温室控制系统上的应用。
从整体上分析和研究了控制系统的电路设计、硬件设计、软件设计,控制对象数学模型的建立、控制算法的选择和参数的整定,人机界面的设计等。
本次研究容为温室大棚温度PLC控制系统设计。
温室大棚的作用是改变植物的生长因子,从而避免四季的气候变化和恶劣气候对植物生长的不良影响,为植物提供一个良好的生长环境。
在植物的生长过程中,温室中的温度,光照,湿度,CO2浓度,土壤酸碱度等环境参数对植物的生长起着重要作用。
本次研究采用可编程控制器PLC作为控制核心。
通过传感器检测温室中的环境参数,经变送转换为标准电流信号(4~20mA)后送入S7-200的模拟量输入模块EM235,PLC通过分析处理,输出开关量,通过驱动电路控制通风扇、遮阳帘、风机等多种执行机构。
第二章PLC概述
2.1PLC简介
2.1.1PLC的产生和应用
1969年美国数字设备公司成功研制世界第一台可编程序控制器PDP-14,并在GM公司的汽车自动装配线上首次使用并获得成功。
1971年日本从美国引进这项技术,很快研制出第一台可编程序控制器DSC-18。
1973年西欧国家也研制出他们的第一台可编程控制器。
我国从1974年开始研制,1977年开始工业推广应用。
进入20世纪70年代,随着电子技术的发展,尤其是PLC采用通讯微处理器之后,这种控制器功能得到更进一步增强。
进入20世纪80年代,随着大规模和超大规模集成电路等微电子技术的迅猛发展,以16位和少数32位微处理器构成的微机化PLC,使PLC的功能更加强大—工作速度快,体积减小,可靠性提高,成本下降,编程和故障检测更为灵活,方便。
目前,PLC在国外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。
2.1.2PLC的组成和工作原理
一、PLC的组成
PLC从组成形式上一般分为整体式和模块式两种,但在逻辑结构上基本上相同。
整体式PLC一般由CPU板、I/O板、显示面板、存和电源等组成。
模块式PLC一般由CPU模块、I/O模块、存模块、电源模块、底板或机架等组成。
无论哪种结构类型的PLC,都属于总线式的开放结构,其I/O能力可根据用户需要进行扩展与组合。
1、CPU
CPU是PLC的核心,主要由运算器、控制器、寄存器及实现它们之间联系的地址总线、数据总线及控制总线构成,此外CPU单元还包括外围芯片、总线接口及有关电路。
它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC部电路的工作状态和编程过程中的语法错误等。
CPU主要用于存储程序及数据,是PLC不可缺少的组成单元,在很大程度上决定了PLC的整体性能。
CPU速度和存容量是PLC的重要参数,它们决定着PLC的工作速度,I/O数量及软件容量等,因此限制着控制规模。
2、I/O模块
输入模块和输出模块通常称为I/O模块或I/O单元。
PLC的对外功能主要是通过各种I/O接口模块与外界联系来实现的。
输入模块和输出模块是PLC与现场I/O装置或设备之间的连接部件,起着PLC与外部设备之间传递信息的作用。
I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。
输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。
I/O分为开关量输入(DigitalInput,DI),开关量输出(DigitalOutput,DO),模拟量输入(AnalogInput,AI),模拟量输出(AnalogOutput,AO)等模块。
开关量模块按电压水平分有220VAC、110VAC、24VDC等规格;按隔离方式分有继电器输出、晶闸管输出和晶体管输出等类型。
模拟量模块按信号类型分有电流型(4-20mA、0-20mA)、电压型(0-10V、0-5V、-10-10V)等规格;按精度分有12位,14位,16位等规格。
3、存储器
存储器是具有记忆功能的半导体电路,分为系统程序存储器和用户存储器。
系统程序存储器用以存放系统程序,包括管理程序、监控程序以及对用户程序做编译处理的解释编译程序。
由只读存储器、ROM组成。
厂家使用的,容不可更改,断电不消失。
用户存储器:
分为用户程序存储区和工作数据存储区。
由随机存取存储器(RAM)组成。
用户使用的。
断电容消失。
常用高效的锂电池作为后备电源,寿命一般为3~5年。
4、编程器
编程器的作用是用来供用户进行程序的输入、编辑、调试和监视的。
编程器一般分为简易型和智能型两类。
简易型只能联机编程,且往往需要将梯形图转化为机器语言助记符后才能送入。
而智能型编程器(又称图形编程器),不但可以连机编程,而且还可以脱机编程。
操作方便且功能强大。
4、电源
PLC电源用于为PLC各模块的集成电路提供工作电源。
同时,有的还为输入电路提供24V的工作电源。
电源输入类型有:
交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。
图2-1PLC基本结构图
二、可编程控制器的工作原理
PLC的工作方式是循环扫描的方式。
每一次扫描所用的时间称为扫描周期或工作周期。
CPU从第一条指令开始,按顺序逐条地执行用户程序直到用户程序结束,然后返回第一条指令开始新的一轮扫描。
PLC就是这样周而复始地重复上述循环扫描的。
PLC工作的全过程可用图2-2所示的运行框图来表示。
图2-2可编程控制器运行框图
2.1.3PLC的分类及特点
PLC分类方法有多种,按规模(即I/O点数)可分为大、中、小型,按结构可分为整体式和组合式。
在实际应用常都按I/O点数来分类。
I/O点数表明PLC的I/O端子数。
一般来说,点数多的PLC功能较强。
一、小型PLC
小型PLC的I/O点数一般在256点以下,其特点是体积小、结构紧凑,整个硬件融为一体,除了开关量I/O以外,还可以连接模拟量I/O以及其他各种特殊功能模块。
它能执行包括逻辑运算、计时、计数、算术、运算数据处理和传送通讯联网以及各种应用指令。
二、中型PLC
中型PLC采用模块化结构,其I/O点数一般在256~1024点之间,I/O的处理方式除了采用一般PLC通用的扫描处理方式外,还能采用直接处理方式即在扫描用户程序的过程中直接读输入刷新输出,它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,存容量更大,扫描速度更快。
三、大型PLC
一般I/O点数在1024点以上的称为大型PLC,大型PLC的软硬件功能极强,具有极强的自诊断功能、通讯联网功能强,有各种通讯联网的模块可以构成三级通讯网实现工厂生产管理自动化。
2.2PLC控制系统设计的基本原则及步骤
理解PLC的基本工作原理和指令系统后,就可以把PLC应用到实际的工程项目中。
无论是用PLC组成集散控制系统,还是独立控制系统,PLC控制部分的设计都可以参考如下所述的基本原则及步骤。
2.2.1PLC控制系统设计的基本原则
任何一种电气控制系统都是为了实现被控对象(生产设备或生产过程)的工艺要求,以提高生产效率和产品质量。
而在实际设计过程中,设计原则往往会涉及很多方面,其中最基本的设计原则可以归纳为4点。
一、最大限度地满足控制要求
充分发挥PLC功能,最大限度地满足被控对象的控制要求,是设计中最重要的一条原则。
设计人员要深入现场进行调查研究,收集资料。
同时要注意和现场工程管理和技术人员及操作人员紧密配合,共同解决重点问题和疑难问题。
二、保证系统的安全可靠
保证PLC控制系统能够长期安全、可靠、稳定运行,是设计控制系统的重要原则。
三、力求简单、经济、使用与维修方便
在满足控制要求的前提下,一方面要注意不断地扩大工程的效益,另一方面也要注意不断地降低工程的成本。
不宜盲目追求自动化和高指标。
四、适应发展的需要
适当考虑到今后控制系统发展和完善的需要,在选择PLC的型号、I/O点数和存储器容量等容时,应留有适当的余量,以利于系统的调整和扩充。
2.2.2PLC控制系统设计的步骤
设计PLC应用系统时,首先是进行PLC应用系统的功能设计,即根据被控对象的功能和工艺要求,明确系统必须要做的工作和因此必备的条件。
然后是进行PLC应用系统的功能分析,即通过分析系统功能,提出PLC控制系统的结构形式,控制信号的种类、数量,系统的规模、布局。
最后根据系统分析的结果,具体确定PLC的机型和系统的具体配置。
PLC控制系统设计可以按以下步骤进行:
一、分析被控对象并提出控制要求、制定控制方案
详细分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,提出被控对象对PLC控制系统的控制要求,确定控制方案,拟定设计任务书。
二、确定I/O设备
根据系统的控制要求,确定系统所需的全部输入设备(如:
按纽、位置开关、转换开关及各种传感器等)和输出设备(如:
接触器、电磁阀、信号指示灯及其它执行器等),从而确定与PLC有关的输入/输出设备,以确定PLC的I/O点数。
三、选择PLC
PLC选择包括对PLC的机型、容量、I/O模块、电源等的选择。
四、分配I/O点并设计PLC外围硬件线路
1、分配I/O点:
画出PLC的I/O点与输入/输出设备的连接图或对应关系表。
2、PLC外围硬件线路:
画出系统其它部分的电气线路图,包括主电路和未进入PLC的控制电路等。
由PLC的I/O连接图和PLC外围电气线路图组成系统的电气原理图。
到此为止系统的硬件电气线路已经确定。
五、程序设计
1、程序设计:
(1)控制程序;
(2)初始化程序;(3)检测、故障诊断和显示等程序;(4)保护和连锁程序。
2、模拟调试:
根据产生现场信号的方式不同,模拟调试有硬件模拟法和软件模拟法两种形式。
六、硬件实施
1、设计控制柜和操作台等部分的电器布置图及安装接线图;
2、设计系统各部分之间的电气互连图;
3、根据施工图纸进行现场接线,并进行详细检查。
七、联机调试
联机调试是将通过模拟调试的程序进一步进行在线统调。
联机调试过程应循序渐进,从PLC只连接输入设备、再连接输出设备、再接上实际负载等逐步进行调试。
如不符合要求,则对硬件和程序作调整。
通常只需修改部份程序即可。
全部调试完毕后,交付试运行。
经过一段时间运行,如果工作正常、程序不需要修改,应将程序固化到EPROM中,以防程序丢失。
八、整理和编写技术文件
技术文件包括设计说明书、硬件原理图、安装接线图、电气元件明细表、PLC程序以及使用说明书等。
图2-3PLC控制系统设计步骤
第三章控制系统的总体设计方案
3.1系统的设计任务
温室大棚的作用是调节植物生长的环境因素,从而避免四季的气候变化和恶劣气候对植物生长的不良影响,为植物提供一个良好的生长环境,促进植物的生长发育,防止病虫害,以达到增加产量的目的。
温室中的温度、光照、湿度、CO2浓度、土壤酸碱度等因素对植物的生长起着重要作用。
本设计的主要控制对象为温室中的温度、光照和二氧化碳浓度,应用温度传感器、光照度传感器和二氧化碳浓度传感器对各环境因子进行检测。
温度的调节主要通过通风窗、加热器的动作来进行解决,光照度主要通过发光体和遮阳帘来调节,CO2浓度主要通过CO2添加器进行补偿。
本温室控制系统就是依据室外装设的温度传感器、光照传感器、CO2传感器等采集或观测的温室的温度、光照强度、CO2浓度等环境参数信息,通过控制设备对温室通风窗、加热器、发光体、遮阳帘、CO2添加器等执行机构的控制,对温室环境环境因素进行调节控制以达到栽培作物生长发育的需要,为作物生长发育提供最适宜的生态环境,以大幅度提高作物的产量和品质。
3.2系统的控制方案
在温室大棚中,上述控制任务的实现需要有一套完善的硬、软件温室系统进行控制。
该温室大棚控制系统以PLC为控制中心,采用传感器对温室温度、光照、二氧化碳浓度等环境因素进行测量,并将结果送到PLC中。
由PLC对结果进行处理,然后调控各设备对环境因子进行补尝。
考虑到实际生产生活中的安全性与可靠性,本控制系统设有手动、自动两种工作模式,自动方式是指周期性地进行PLC控制的方式;而手动方式则是指在出现应急情况等一些突发事件时,通过手动操作控制执行器件的工作。
自动工作中,如果被检测量温度高于设定值,PLC就会发出相应的指令控制开启通风窗和冷风机;如果测量值与设定值相等,则关闭通风窗和冷风机;如果测量值低于设定值,则打开加热器和热风机对温室进行加温。
当温室的光照低于设定值时,系统打开遮阳帘或开启发光体;当温室的光照高于设定值时,系统关闭遮阳帘或发光体。
当温室的二氧化碳浓度低于设定值,系统开启二氧化碳添加器。
通过温度,光照和二氧化碳浓度的设定与调节达到适应不同植物生长的需求,从而广泛应用到实际中。
本设计的特点是成本低廉,节约资源,提高产量,实现经济价值最大化。
该温室控制系统的总体框图如下所示。
图3-1系统总体框图
3.3系统的工作原理
该温室大棚控制系统由PLC系统、传感器系统、执行部件等几个部分组成。
该温室控制系统以PLC为控制中心,通过温度传感器、光照传感器、二氧化碳浓度传感器采集温室中环境因子的有关参数,经变送转换为标准电流信号(4~20mA)后经由S7-200的模拟量输入模块EM235送入PLC控制器,PLC再通过PID控制算法将采集的参数与已设定的值进行分析处理,输出开关量,对执行机构进行控制。
在此系统中还可以通过串口的形式与PC机相连,从而实现实时数据的管理与存储,为以后植物生长的研究带来宝贵资料。
第四章控制系统的硬件设计
在掌握了PLC的硬件构成、工作原理、指令系统以及编程环境后,就可以以PLC作为主要控制器来构造PLC控制系统。
PLC控制系统的设计主要包括硬件设计和软件设计两部分。
本章主要从硬件设计角度进行温室控制系统的硬件设计方案,本章节主要介绍了该项目的电气控制系统设计、PLC硬件电路及外部配置设计。
4.1电气控制系统设计
4.1.1系统主电路设计
图4-1系统主电路图
系统的主电路如图所示,其风扇电机、遮
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大棚 温度 自动控制系统 设计