废水生物处理基本原理厌氧生物处理原理.docx
- 文档编号:24592783
- 上传时间:2023-05-29
- 格式:DOCX
- 页数:10
- 大小:103.27KB
废水生物处理基本原理厌氧生物处理原理.docx
《废水生物处理基本原理厌氧生物处理原理.docx》由会员分享,可在线阅读,更多相关《废水生物处理基本原理厌氧生物处理原理.docx(10页珍藏版)》请在冰豆网上搜索。
废水生物处理基本原理厌氧生物处理原理
废水生物处理基本原理
――废水厌氧生物处理原理
废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。
1.1.1厌氧生物处理中的基本生物过程——阶段性理论
图1厌氧反应的两阶段理论图示
1、两阶段理论:
20世纪30~60年代,被普遍接受的是“两阶段理论”
第一阶段:
发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与
反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:
1)生长速率快,2)对环境条件的适应性(温度、pH等)强。
第二阶段:
产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methaneproducingbacteria);产甲烷细菌的主要特点是:
1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。
1.1.2三阶段理论
对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质;
厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌
(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:
产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一
些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物
质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;
有机物
IV为四类群理论;
2)所产生的细胞物质未表示在图中
图2厌氧反应的三阶段理论和四类群理论
上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲
烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(—种产氢产乙酸细菌),另一种细菌则利用H2
和CO2产生CH4(一种真正意义上的产甲烷细菌一一嗜氢产甲烷细菌);因而,Bryant提出了厌氧消化过程的“三阶段理论”:
水解、发酵阶段:
产氢产乙酸阶段:
产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇
等转化为乙酸、H2/CO2;
产甲烷阶段:
产甲烷菌利用乙酸和H2、CO2产生CH4;
一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的
分解,其余的则产自H2和CO?
。
1.1.3四阶段理论(四菌群学说)
几乎与Bryant提出“三阶段理论”的同时,又有人提出了厌氧消化过程的“四菌群学说”:
实际上,是在上述三阶段理论的基础上,增加了一类细菌一一同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2合
成为乙酸。
但研究表明,实际上这一部分由H2/CO2合成而来的乙酸
的量较少,只占厌氧体系中总乙酸量的5%左右。
总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。
4、多阶段理论
但是,当利用厌氧生物处理工艺处理含有复杂有机物的时候,在厌氧反应器中发生的反应会远比上述“三阶段理论”、“四阶段理论”中所描述的反应过程复杂,可以参见“厌氧复杂体系示意图”。
1.1.4厌氧消化过程中的主要微生物
主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。
1.141发酵细菌(产酸细菌):
发酵产酸细菌的主要功能有两种:
①水解一一在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②酸化一一将可溶性大分子有机物转化为脂肪酸、醇类等;
主要的发酵产酸细菌:
梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:
纤维素
分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。
1.142产氢产乙酸菌:
产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。
主要的产氢产乙酸反应有:
乙醇:
CH3CH2OHH2O>CH3COOH2H2
丙酸:
CH3CH2COOH2H2O>CH3COOH3H2CO2
丁酸:
CH3CH2CH2COOH2H2O_;2CH3COOH2H2
注意:
上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H2消耗掉。
主要的产氢产乙酸细菌多为:
互营单胞菌属、互营杆菌
属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。
1.143产甲烷菌
20世纪60年代Hungate开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行;
产甲烷细菌的主要功能是将产氢产乙酸菌的产物一一乙酸和
H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:
乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷
菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)和
Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解;
典型的产甲烷反应:
1CH3COOHtCH4+CO2
24H2CO2>CH42H2O
34HCOOf2HJCH4-CO2-2HC3-
44CO+2H2OTCH4+3CO2
54CH3OHT3CH4+HC严H++H2O
64(CH3)3—NH49H2O>9CH43HCO3F3H4NH4
72(CH3)3-S3H2Or3CH4HCQH2H2S
84CH3OH■HCH4■H2O
根据产甲烷菌的形态和生理生态特征,可将其分类如下:
――最新的分类(Bergy'细菌手册第九版),共分为:
三目七科、十九属、65种;
产甲烷菌有各种不同的形态,常见的有:
①产甲烷杆菌;②产甲
烷球菌;③产甲烷八叠球菌;④产甲烷丝菌;等等。
在生物分类学上,产甲烷菌(Methanogens)属于古细菌
(Archaebacteria),大小、外观上与普通细菌(Eubacteria)相似,
但实际上,其细胞成分特殊,特别是细胞壁的结构较特殊;在自然界的分布,一般可以认为是栖息于一些极端环境中(如地热泉水、深海火山口、沉积物等),但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等;产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达4、6天,因此,一
般情况下产甲烷反应是厌氧消化的限速步骤
1.1.5厌氧生物处理的影响因素
产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;主
要影响因素有:
温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。
1、温度:
温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:
高温消化(55C
左右)和中温消化(35C左右);高温消化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25C)进行,以节省能量和运行费用。
2、pH值和碱度:
pH值是厌氧消化过程中的最重要的影响因素;重要原因:
产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.8~7.2,在<6.5或>8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:
进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲
体系,主要由碳酸盐体系所控制;一般来说:
系统中脂肪酸含量的增加(累积),将消耗hco3-,使pH下降;但产甲烷菌的作用不但可以消耗脂肪酸,而且还会产生hc°3-,使系统的pH值回升。
碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能恢复。
3、氧化还原电位:
严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产
甲烷菌可以在氧化还原电位为+100~-100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150~-400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;
4、营养要求:
厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:
N:
P=200:
5:
1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:
①K、Na、Ca等金属盐类;②微量元素Ni、Co、Mo、Fe等;③有机微量物质:
酵母浸出膏、生物素、维生素等。
5、F/M比:
厌氧生物处理的有机物负荷较好氧生物处理更高,一般可达5~10kgCOD/m3.d,甚至可达50~80kgCOD/m3.d;无传氧的限制;可以积聚更高的生物量。
产酸阶段的反应速率远高于产甲烷阶段,因此必须十分谨慎地选择有机负荷;
高的有机容积负荷的前提是高的生物量,而相应较低的污泥负
荷;
高的有机容积负荷可以缩短HRT,减少反应器容积。
6、有毒物质:
――常见的抑制性物质有:
硫化物、氨氮、重金属、氰化物及某些有机物;
1硫化物和硫酸盐:
硫酸盐和其它硫的氧化物很容易在厌氧消化过程中被还原成硫化物;可溶的硫化物达到一定浓度时,会对厌氧消化过程主要是产甲烷过程产生抑制作用;投加某些金属如Fe可以去除S2-,或从系统中吹脱H2S可以减轻硫化物的抑制作用。
2氨氮:
氨氮是厌氧消化的缓冲剂;但浓度过高,则会对厌氧消化过程产生毒害作用;抑制浓度为50~200mg/l,但驯化后,适应能力会得到加强。
3重金属:
一一使厌氧细菌的酶系统受到破坏。
4氰化物:
5有毒有机物:
1.1.6厌氧生物处理的主要特征
1、厌氧生物处理过程的主要优点:
1能耗大大降低,而且还可以回收生物能(沼气);
2污泥产量很低;
——厌氧微生物的增殖速率比好氧微生物低得多,产酸菌的产率
Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。
3厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;
4反应过程较为复杂一一厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;
2、厌氧生物处理过程的主要缺点:
1对温度、pH等环境因素较敏感;
2处理出水水质较差,需进一步利用好氧法进行处理;
3气味较大;
4对氨氮的去除效果不好;等等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 废水 生物 处理 基本原理 原理