设计参考2资料.docx
- 文档编号:2458033
- 上传时间:2022-10-29
- 格式:DOCX
- 页数:29
- 大小:470.41KB
设计参考2资料.docx
《设计参考2资料.docx》由会员分享,可在线阅读,更多相关《设计参考2资料.docx(29页珍藏版)》请在冰豆网上搜索。
设计参考2资料
列管式换热器的设计
列管式换热器的应用已有很悠久的历史。
现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。
同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。
为此本章对这两类换热器的工艺设计进行介绍。
列管式换热器的设计资料较完善,已有系列化标准。
目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。
列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。
其中以热力设计最为重要。
不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。
热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。
流动设计主要是计算压降,其目的就是为换热器的辅助设备——例如泵的选择做准备。
当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。
结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。
在某些情况下还需对换热器的主要零部件——特别是受压部件做应力计算,并校核其强度。
对于在高温高压下工作的换热器,更不能忽视这方面的工作。
这是保证安全生产的前提。
在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。
列管式换热器的工艺设计主要包括以下内容:
①根据换热任务和有关要求确定设计方案;
②初步确定换热器的结构和尺寸;
③核算换热器的传热面积和流体阻力;
④确定换热器的工艺结构。
1.1设计方案的确定
1.1.1换热器类型的选择
(1)固定管板式换热器
这类换热器如图2-1(a)所示。
固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构使壳侧清洗困难,所以壳程宜用于不易结垢和清洁的流体。
当管子和壳体的壁温差大于50℃时,应在壳体上设置温差补偿——膨胀节,依靠膨胀节的弹性变形可以减少温差应力。
膨胀节的形式较多,常见的有U形、平板形和Ω形等几种。
由于U形膨胀节的挠性与强度都比较好,所以使用得最为普遍。
当管子和壳体的壁温差大于60℃和壳程压强超过0.6MPa时,由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。
由此可见,这种换热器比较适合用于温差不大或温差较大但壳程压力不高的场合。
(2)浮头式换热器
浮头式换热器针对固定管板式的缺陷做了结构上的改进。
两端管板只有一端与壳体完全固定,另一端则可相对于壳体作某些移动,该端称之为浮头,如图2-1(b)所示。
换热器管束膨胀不受壳体约束,所以壳体与管束之间不会由于膨胀量的不同而产生热应力。
而且在清洗和检修时,仅需将管束从壳体中抽出即可,所以能适用于管壳壁间温差较大,或易于腐蚀和易于结垢的场合。
但该类换热器结构复杂、笨重,造价约比固定管板式高20%左右,材料消耗量大,而且由于浮头的端盖在操作中无法检查,所以在制造和安装时要特别注意其密封,以免发生内漏,管束和壳体的间隙较大,在设计时要避免短路。
至于壳程的压力也受滑动接触面的密封限制。
(3)填料函式换热器
此类换热器的管板也仅有一端与壳体固定,另一端采用填料函密封,如图2-1(C)所示。
它的管束也可自由膨胀,所以管壳之间不会产生热应力,且管程和壳程都能清洗,结构较浮头式简单,造价较低,加工制造方便,材料消耗较少。
但由于填料密封处易于泄漏,故壳程压力不能过高,也不宜用于易挥发、易燃、易爆、有毒的场合。
(4)U型管换热器
U形管式换热器仅有一个管板,管子两端均固定于同一管板上,如图2-1(d)所示。
这类换热器的特点是:
管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
但管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分必须用壁较厚的管子。
这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质不易结垢,高温、高压、腐蚀性强的情形,价格比固定管板式高10%。
(a)
(b)
(c)
图2-1几种列管式换热器的结构
1—管箱;2—封头;3—管箱或封头;4—管箱盖板;5—封头接管;6—固定管板;7—管子;8—壳体;9—壳盖;
10—壳体法兰(固定端);11—壳体法兰(后盖端);12—壳体接管;13—壳盖法兰;14—膨胀节;15—浮动管板;?
?
?
16—浮头盖;17—浮头法兰;单位18—浮头衬托构件;19—部分剪切环;20—活套靠背法兰;21—浮头盖(外部);22—浮动管板套;23—填料函法兰;24—填料;25—填料压盖;26—拉杆和定距管;27—横向折流板或支撑板;28—缓冲挡板;29—纵向折流板;30—分程隔板;31—排气接口;32—排液接口;33—仪表接口;34—鞍式支座;35—吊环;36—悬挂式支座
1.1.2流动空间的选择
在管壳式换热器的计算中,首先需决定何种流体走管程,何种流体走壳程,这需遵循一些一般原则。
①应尽量提高两侧传热系数较小的一个,使传热面两侧的传热系数接近。
②在运行温度较高的换热器中,应尽量减少热量损失,而对于一些制冷装置,应尽量减少其冷量损失。
③管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。
④应减小管子和壳体因受热不同而产生的热应力。
从这个角度来说,顺流式就优于逆流式,因为顺流式进出口端的温度比较平均,不像逆流式那样,热、冷流体的高温部分均集中于一端,低温部分集中于另一端,易于因两端胀缩不同而产生热应力。
⑤对于有毒的介质或气相介质,必使其不泄漏,应特别注意其密封,密封不仅要可靠,而且还应要求方便及简单。
⑥应尽量避免采用贵金属,以降低成本。
以上这些原则有些是相互矛盾的,所以在具体设计时应综合考虑,决定哪一种流体走管程,哪一种流体走壳程。
(1)宜于通入管内空间的流体
①不清洁的流体因为在管内空间得到较高的流速并不困难,而流速高,悬浮物不易沉积,且管内空间也便于清洗。
②体积小的流体因为管内空间的流动截面往往比管外空间的截面小,流体易于获得必要的理想流速,而且也便于做成多程流动。
③有压力的流体因为管子承压能力强,而且还简化了壳体密封的要求。
④腐蚀性强的流体因为只有管子及管箱才需用耐腐蚀材料,而壳体及管外空间的所有零件均可用普通材料制造,所以造价可以降低。
此外,在管内空间装设保护用的衬里或覆盖层也比较方便,并容易检查。
⑤与外界温差大的流体因为可以减少热量的逸散。
(2)宜于通入管间空间的流体
①当两流体温度相差较大时,α值大的流体走管间,这样可以减少管壁与壳壁间的温度差,因而也减少了管束与壳体间的相对伸长,故温差应力可以降低。
②若两流体给热性能相差较大时,α值小的流体走管间,此时可以用翅片管来平衡传热面两侧的给热条件,使之相互接近。
③和蒸汽对流速和清理无甚要求,并易于排除冷凝液。
④粘度大的流体管间的流动截面和方向都在不断变化,在低雷诺数下,管外给热系数比管内的大。
⑤泄漏后危险性大的流体可以减少泄漏机会,以保安全。
此外,易析出结晶、沉渣、淤泥以及其他沉淀物的流体,最好通入比较更容易进行机械清洗的空间。
在管壳式换热器中,一般易清洗的是管内空间。
但在U形管、浮头式换热器中易清洗的都是管外空间。
1.1.3流速的确定
当流体不发生相变时,介质的流速高,换热强度大,从而可使换热面积减少、结构紧凑。
成本降低,一般也可抑止污垢的产生。
但流速大也会带来一些不利的影响,诸如压降ΔP增加,泵功率增大,且加剧了对传热面的冲刷。
换热器常用流速的范围见表2-2和表2-3。
表2-2换热器常用流速的范围
?
?
?
?
?
?
?
介质
循环水
新鲜水
一般液体
易结垢液体
低粘度油
高粘度油
气体
流速
管程流速,m/s
1.0~2.0
0.8~1.5
0.5~3
>1.0
0.8~1.8
0.5~1.5
5~30
壳程流速,m/s
0.5~1.5
0.5~1.5
0.2~1.5
>0.5
0.4~1.0
0.3~0.8
2~15
表2-3列管式换热器易燃、易爆液体和气体允许的安全流速
液体名称
乙醚、二氧化碳、苯
甲醇、乙醇、汽油
丙酮
氢气
安全流速,m/s
<1
<2~3
<10
≤8
1.1.4加热剂、冷却剂的选择
物料在换热器内加热和冷却时,除采用两股工艺流体进行热交换外,常要用另一种流体来给出或带走热量,此流体就称为载热体。
起加热作用的载热体叫做加热剂,起冷却或冷凝作用的载热体称为冷却剂。
载热体质量的多少和本身的价格,涉及到投资费用的问题,所以选用一种适当的载热体,也是传热过程中的一个重要问题。
在选择时应考虑以下几个原则:
(1)载热体能满足工艺上的要求达到的加热(冷却)温度;
(2)载热体的温度易于调节;
(3)载热体的饱和蒸汽压小,加热过程不会分解;
(4)载热体的毒性小,对设备的腐蚀性小;
(5)载热体不易爆炸;
(6)载热体的价格低廉,来源充分。
常用加热剂有饱和水蒸汽、烟道气、导热油等。
水和空气是最常用的冷却剂,冷却水温度一般为10~25℃,如需冷却到较低温度,则需采用低温介质,如冷冻盐水、氟利昂等。
工业上常用的载热体及其适用场合列于表2-4,供选用时参考。
1.1.5流体出口温度的确定
换热终温有时是由工艺过程的需要决定的。
当换热终温可以选择时,由于该温度影响到热强度和换热效率,因此对换热器操作的经济合理性由影响。
在冷流体的出口温度与热流体的进口温度相等的极限情况下,换热效率虽然很大,但热强度很小,需要的传热面积为最大。
另外在决定换热终温时,一般不希望冷流体的出口温度高于热流体的出口温度,否则会出现反传热现象,当遇到这种情况时,可采用几个换热器串联的方法解决。
为了合理地规定换热终温,可参考下述数据。
(1)热端的温差≤20℃。
(2)冷端的温差分三种情况考虑:
①两种工艺流体换热时,在一般情况下,冷端温差≥20℃;
②两种工艺流体换热时,若热流体尚需进一步加热,则冷端温差≥15℃;
表2-4?
载热体的种类及适用范围
载热体名称
温度范围/℃
优?
点
缺?
点
加热剂
热水
40~100
可利用工业废水和冷凝水废热作为回收
只能用于低温,传热情况不好,本身易冷却,温度不易调节
饱和蒸汽
100~180
易于调节,冷凝潜热大,热利用率高
温度升高,压力也高,设备有困难。
180℃时对应的压力为10MPa
高温载热体
联苯混合物
液体:
15~255
蒸汽:
255~380
加热均匀,热稳定性好,温度范围宽,易于调节,高温时的蒸汽压很低,热焓值与水蒸汽接近,对普通金属不腐蚀
价昂,易渗透软性石棉填料,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 设计 参考 资料