百分数教案.docx
- 文档编号:24503806
- 上传时间:2023-05-28
- 格式:DOCX
- 页数:40
- 大小:306.85KB
百分数教案.docx
《百分数教案.docx》由会员分享,可在线阅读,更多相关《百分数教案.docx(40页珍藏版)》请在冰豆网上搜索。
百分数教案
课题:
百分数的意义和写法
教学目标:
1.使学生了解百分数的意义,会正确读写百分数。
2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。
教学重点:
百分数的意义及读、写
教学难点:
分数与百分数的意义之间的联系和区别
教具准备 课前查阅百分数的资料
小黑板或投影
教学过程
活动
(一)复习准备
1.在日常生活中,同学们会经常看到或听到这样一些数:
(出示投影或小黑板)
(1)在12届亚运会中
各国金牌情况如下:
中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占
23.8%。
(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。
2、谁知道这些数是什么数?
你对百分数已经有了哪些了解?
你还想了解什么?
师:
在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。
这节课就来研究。
活动
(二)探究新课
1某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。
六年级三
生占全年级的几分之几?
五年级三好生占全年级的几分之几?
17/100、3/20分别表示两个量之间的什么关系?
(倍数关系)
提问:
根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?
你能直接比较它们的大小吗?
为什么?
(分子不同,分母也不同,不容易看出。
)
讨论:
怎样做才容易比较这两个分数的大小呢?
(通分,化成分母相同的分数。
)根据什么?
(分数的基本性质。
)
小结:
像这样分母不同的分数进行比较时,一般要进行通分母相同。
尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。
下面我们把这两个数变成分母是100的分数。
思考:
17/100和15/100都表示什么?
(表示三好学生和总人数之间的倍数关系)
2.练习。
(出示投影或小)
一个工厂从一批产品中抽出500件,经过检验,有
板书:
百分数的意义和写法。
根据学生的回答板书:
六年级三好生占全年级的17/100五年级三好生占全年级的3/20
板书17/100=17/100
3/20=15/100
490件合格。
合格的比率是多少?
思考并计算这批产品的合格率是多少?
(490/500)改写成分母是100的分数是多少?
(98/100)说说98/100表示什么?
3.概括百分数的意义。
师:
通过以上的练习说一说17/100、15/100、98/100
都表示什么?
(表示一个数是另一个数的百分之几)
提问:
什么是百分数?
百分数表示两个量之间什么关系?
小结:
表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。
提问:
百分数表示两个数之间什么关系?
(倍数关系。
)应不应该有单,使分位名称?
4.学习百分数的读法和写法。
提问:
百分数和分数比,相同点和不同点是什么?
百分数应该用什么形式表示呢?
(1)写法:
写百分数时,通常不写成分数形式,而采用(%)表示。
写百分数时,去掉分数线和分母,在分子后面添上百分号。
(2)读法:
读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。
5.百分数与分数的联系和区别。
活动(三)巩固练习
1.第105页“做一做”,2.第106页第1,2题,3.(投影)判断:
(1)分母是100的分数叫做百分数。
(2) 27/100千米可以写成27%千米。
(3)百分数的分母一定是100。
(4)五
(2)班45人,体育全部达标,达标率100%。
4.填空:
(1)一本书看了40%,表示( )占( )的40%。
如果书是100页,看了( )页;书是 200页,看了( )页。
(2)一条公路,修了25%,还剩 ()%没修。
(3)火车速度比汽车快25%,火车的速度是汽车的( )%。
5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。
十月份的产值比九月份的多了还是少了?
活动(四)课堂总结
反思:
课题:
百分数和分数、小数的互化 课时2课时
教学目标:
1.使学生掌握百分数、小数、分数互化的方法,并能正确的互化。
2.在学习互化的过程中使学生认识到这三者之间的内在联系,为后面学习百分数的计算和应用打下基础。
3.在学习的过程中培养学生的分析思维和抽象概括能力。
教学重点:
使学生理解掌握百分数和分数、小数互化的方法。
教学难点:
明确三者之间的关系。
教学过程
活动
(一)复习准备
1.我们以前学过小数和分数,现在又学习了百分数。
想一想,小数和分数之间可以互相转化吗?
2.
(1)把下面的小数化成分数,并说说怎样把小数怎样化成分数。
0.45 1.2 0.367
(2)把下面的分数化成小数,并说说怎样把分数又怎样化成小数。
3/25, 63/100, 15/8
(3)把下列分数写成百分数的形式。
37/100, 8.6/100, 5/100
3.引入。
在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。
除了用百分数表示,还可以用什么数表示?
(小数和分数。
)
这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。
学习新课
第一课时
活动
(二)百分数和小数的互化。
(1)回忆小数化分数的过程。
(2)小数要化成百分数,分母应是多少?
怎样使它的分母变成100呢?
(3)出示例1。
活动(三)百分数化成小数
例1 把0.25,1.4,0.123化成百分数。
①小数化百分数分几步进行?
②(先把小数化成分母是100的分数,再化成百分数。
)学生回答,教师板书:
0.25=25/100=25%
③1.4怎样化成分母是100的分数?
根据什么?
④“做一做”:
把下面各小数化成百分数。
0.38 1.05 0.055 3
⑤观察例1的各小数,化成百分数后发生了怎样的变化?
(把小数点向右移动了两位,添上了百分号。
)
你所做的练习的各数是不是也发生了同样的变化?
这一变化符合什么?
(分数的基本性质。
)
⑥现在你能很快地把下列小数化成百分数吗?
(口答)
2.5 0.785 0.16
(4)百分数又怎样化成小数呢?
(5)出示例2。
例2把27%,135%,0.4%化成小数。
学生自己试做,学生总结方法
①说一说百分数化小数的方法。
(先把百分数化成分母是100的分数,再化成小数。
)
②观察百分数化成小数发生了什么变化?
(小数点向左移动了两位,去掉了百分号。
)
③把下面各百分数化成小数
15% 80% 3.5%
(6)小结。
通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移两位。
巩固与提高
1、补充练习:
(1). 判断题:
0.5%化成小数是0.005. ( )
12后面添上一个“%”得到的数,就是原数缩小100倍. ( )
(2)把百分数化成小数或整数.
2% 25% 0.04% 150% 300%
10% 280% 17%0.2%4.5%
反思:
课题:
百分数和分数的互化
活动
(一)复习导入
分数可以化成小数,我们又学习了小数化成百分数的方法,你能利用已有的知识把分数化成百分数吗?
(3)掌握了分数化百分数的方法。
百分数化分数又怎么做呢?
(4)出示例3。
活动
(二)百分数化成分数
例3 把20%,80%,12.5%化成分数。
①说说你的想法。
(先把百分数写成分母是100的分数,再约成最简分数。
)
把12.5%化成分数后,分子部分是小数应怎样处理?
(先利用分数的基本性质把分子、分母同时扩大若干倍,去掉分子的小数点,然后再约分。
)
12.5%=12.5/100=125/10000=1/8
出示例4
你能用百分数表示出其中的分数吗?
1/5=0.2=20%
4/5=80/100=80%
1/14=1÷14≈0.071=7.1%
学生自己试做
循环小数不能化成分母是100的分数怎么办?
(取近似值。
)
师:
一般要求百分数的分子要保留一位小数,那么当把分数化小数时应保留几位小数?
(保留三位小数。
)
(5)说一说百分数和分数应怎样互化?
打开课本看109页百分数和分数互化的方法。
(6)总结
通过今天的学习,你能把分数、小数,百分数三者之间任意转化吗?
互相说一说转化的方法。
巩固提高
补充练习:
选择题
(1)六折改写百分数是 ( )(补充有关打折的常识)
A.600% B.60% C.6% D.0.6%
(2)在7的后面添上百分号,这个数 ( )
A.大小不变 B.缩小100倍 C.缩小100%
(3)和25%不相等的数是 ( )
A.2.5 B.1/4 C.0.25
反思:
课题:
用百分数解决问题
教学目标:
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百
分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重点:
解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学难点:
对一些百分率的理解。
教具准备小黑板、口算卡片
参考的有关数据:
稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%
教学过程
教学设计
第一课时
活动
(一)创设情境,提出问题:
1、口算比赛:
(时间:
1分钟)
5/6―1/2 3/10×2/9 1―1/4 4/5÷1/5 4/5÷4/3
5/8+3/4 7/12×4/7 7/8+1/4 1/5+1/3 3/4÷5
想一想,根据自己的口算情况,你能提出什么数学问题?
(做对的题数占总题数的几分之几?
做错的题数占
总题数的几分之几?
)
2、学生根据自己的口算情况口答“做对的题数占总题数的几分之几?
做错的题数占总题数的几分之几?
”
3、提出问题:
能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?
补充(点评)
(将“做对的题数占总题数的几分之几”改成“做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的百分之几”)
活动
(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2、小结:
“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
二)共同探讨
1、师:
百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。
像这些正确率、错误率等我们通常称作“百分率”。
你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。
如:
合格的产品数发芽的个数
产品的合格率= ────────×100%发芽率=───────×100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例 1 六年级有学生160人,已达到《国家体育锻炼标准》的有120人, ?
例2 某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。
?
(2)完成第113页的“做一做”
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?
5是2的百分之几?
(2) 用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。
全世界鸟类约有
8590种。
?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。
补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?
方法是怎样的?
这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
反思:
课题:
用百分数解决问题
教学目标:
1、认识“求比一个数多(少)百分之几”的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:
掌握“求比一个数多(少)百分之几”的应用题的解题方法,正确解答。
教学难点:
理解这类应用题的数量关系、解题思路和解题方法。
教具准备小黑板
教学过程
教学设计第一课时
活动
(一)铺垫复习。
1、说出下面各题中表示单位“1”的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。
实际造林是原计划的百分之几?
活动
(二)相互合作,探究问题:
1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?
还可以提什么问题?
出示例3。
一个乡去年原计划造林12公顷,实际造林14公顷。
实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?
不同的地方是什么?
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
(14-12)÷12=2÷12≈0.167=16.7%
答:
实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
可能出现14÷12-100%≈116.7%-100%=16.7%
5、思考:
如果例3中的问题改成:
“原计划造林比实际造林少百分之几?
”该怎样解答?
(例3中的问题改成“原计划造林比实际造林少百分之几”后,单位“1”的量发生变化。
改编后的应用题应把“实际造林的公顷数(14公顷)看做单位“1”的量,要比较的量是“原计划造林比实际造林少的公顷数”。
)
解答过程:
(14-12)÷14 或者:
1-12÷14
=2÷14 ≈1-0.857
≈0.143 =1-85.7%
=14.3% =14.3%
答:
原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位“1”。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。
(对的在括号里打“√”,错的打“×”。
)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。
( )
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。
( )
反思:
课题纳税
教学目标
1、理解纳税的含义和纳税的重大意义。
2、能计算一些有关纳税的问题。
3、培养学生的依法纳税意识。
教学重点:
能进行一些有关纳税问题的计算。
教学过程|:
活动一、学生汇报自学情况,介绍有关纳税的知识
纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防等事业,以便不断提高人民的物质和文化水平,保卫国家安全。
因此,根据国家规定应该纳税的集体或个人都有依法纳税的义务。
1993年我国进行了税制改革,将纳税主要分为增值税、消费税、营业税和个人所得税等几类。
缴纳的税款叫应纳税额。
根据纳税种类的不同,应纳税额的计算方法也有说不同。
应纳税额与各种收入(如销售额、营业额、应纳税所得额等)的比率叫做税率。
活动二、探索计算纳税的方法
1、教学例5
出示例5、一家饭店十月份的营业额约是30万元。
如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
结合例5,进一步让学生理解什么是营业额、什么是税率、什么是营业税、什么是应纳税额。
在弄清以上这些相关概念之后,学生尝试解答例5。
在学生独立审题解答的基础上订正。
2、完成第102页的第4题、第8题。
在做这题之前,先介绍一些有关税率的常识:
由于不同行业的经营效果有差别,又由于国家为了保护和扶持某些人民群众迫切需要的产品和服务行业等,会减少这些行业的税率,因此消费税和营业税的税率会有很大差别。
如例5中说到饭店的营业税率是5%,而审稿费的个人所得税率就是3%。
六、板书:
纳税
例5、一家饭店十月份的营业额约是30万元。
如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
30×5%=1.5(万元)
答:
这家饭店十月份应缴纳营业税15万元。
反思:
课题利息
教学目标
1、学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息,什么是利息税。
2、能正确计算利息和税后利息。
教学重点:
利息和税后利息的计算。
教学难点:
税后利息的计算。
课前调查:
银行储蓄凭证。
教学过程
活动一、创设生活情境,了解储蓄的意义和种类
1、储蓄的意义
师:
快要到年底了,许多同学的爸爸妈妈的单位里
会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?
爸爸妈妈会不会把一大笔现金放在家里?
为什么?
师:
人们常常把暂时不用的钱存入银行或信用社,储蓄起来。
这样不仅可以支援国家建设,页使得个人用钱更加安全和有计划,还可以增加一些收入。
2、储蓄的种类。
(学生汇报课前调查)
活动二、自学课本,理解本金”、“利息”、“利率”的含义
1、自学课本中的例子,理解“本金”、“利息”、“利率”的含义,然后四人小组互相举例,检查对“本金”、“利息”、“利率”的理解。
本金:
存入银行的钱叫做本金。
利息:
取款时银行多付的钱叫做利息。
利率:
;利息与本金的百分比叫做利率。
2、师:
根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。
有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。
出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。
3、利息计算
(1)利息计算公式
利息=本金×利率×时间
(2)例题:
王奶奶要存1000元请你帮助王奶奶算一算存两年后可以取回多少钱?
(整存整取两年的利率是2.7%)。
在弄清以上这些相关概念之后,学生尝试解答例题。
在学生独立审题解答的基础上订正。
板书:
方法一方法二
1000×2.7%×2=54(元)1000×2.7%×2=54(元)
54×20%=10.8(元)1000+54×(1-20%)
1000+54-10.8=1043.2(元)=1043.2(元)
答:
两年后王奶奶可以取回1043.2元。
师:
我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。
王奶奶存1000元2年,到期利息54元,应缴纳利息税54×20%=10.8元这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1043.2元。
4、学生完成第100页的“做一做”
活动三、实践应用
练习二十三第6、7、9题
完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。
活动四、课堂总结
学生谈谈学习本课有什么新的收获。
五、板书:
方法一方法二
1000×2.7%×2=54(元)1000×2.7%×2=54(元)
54×20%=10.8(元)1000+54×(1-20%)
1000+54-10.8=1043.2(元)=1043.2(元)
答:
两年后王奶奶可以取回1043.2元。
反思:
课题折扣
教学目标
1、让学生在商品打折销售的情境中理解“折扣”的意义。
2.学生在掌握求一个数的百分之几是多少这种问题的基础上自主解决问题,培养学生解决实际问题的能力。
3.养成独立思考、认真审题的学习习惯。
教学重点:
理解“折扣”的意义。
教学过程
教学设计
活动一、创设情景理解“折扣”的意义
师:
利用课件或挂图出示商场店庆、商品打折的情境。
问:
“打折”是什么意思?
八五折、九折表示什么?
生:
结合实际了解到的信息进行思考和交流,再阅读课本进行对照分析。
小结:
商店降价出售商品叫做折扣销售,通称“打折”。
几折就表示十分之几,也就是百分之几十。
问:
七五折表示什么?
五折表示什么?
活动二、自主探索解决问题的方法
1、出示例4
2.让学生独立解答
3.集体汇报时请学生说说自己的解题思路,并且两个问题加以比较
板书:
(1)180×85%=153(元)
(2)160×(1-90%)=16(元)
师生共同总结解题方法
活动三、实践应用
1、第97页做一做
学生独立完成并说出各折扣表示的意思
2、第101页第1、2、3
活动四、课堂总结
学生谈谈学习本课有什么新的收获。
板书设计:
(1)180×85%=153(元)
(2)160×(1-90%)=16(元)
反思:
第六单元统计
课题
扇形统计图
教学目标
1.进一步了解条形统计图的意义和作用,知道它的特点和用途。
2.掌握扇形统计图的特点,并能够在生产、生活中运用扇形统计图来分析问题。
3.从现实中挖掘数学题材,让学生充分认识到统计的价值。
重点
在条形统计图和百分数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 百分数 教案