有色金属压力容器的焊接技术应用.docx
- 文档编号:24347012
- 上传时间:2023-05-26
- 格式:DOCX
- 页数:11
- 大小:21.02KB
有色金属压力容器的焊接技术应用.docx
《有色金属压力容器的焊接技术应用.docx》由会员分享,可在线阅读,更多相关《有色金属压力容器的焊接技术应用.docx(11页珍藏版)》请在冰豆网上搜索。
有色金属压力容器的焊接技术应用
有色金属压力容器的焊接技术应用
压力容器设备中,除广泛使用碳钢、低合金钢及不锈钢外,有色金属如钛及钛合
金、镍及镍基合金、铜及铜合金、铝及铝合金的应用也日益增多。
由于这些有色金属
具有不锈钢所不能比的优点,所以在一些特殊的重要场合已占有主导地位。
一、镍基耐蚀合金的焊接
镍及镍基合金具有特殊的物理、力学及耐腐蚀性能,镍基耐蚀合金在200℃~
1090℃范围内能耐各种腐蚀介质的侵蚀,同时具有良好的高温和低温力学性能。
在
一些苛刻腐蚀条件下是一般不锈钢无法取代的优良材料。
纯镍一般在工业中应用较
少,但在镍中添加入铬、铜、铁、钼、铝、钛、铌、钨等元素后,通过固溶强化,不
但改善其力学性能,而且可适应于各种腐蚀介质下侵蚀,使其具有优良的耐腐蚀性。
1.镍基耐蚀合金的焊接特点
①易产生焊接热裂纹
由于镍基合金为单相奥氏体组织,所以与不锈钢相比,具有高的焊接热裂纹敏感
性,特别是焊缝易产生多边化晶间裂纹。
这种裂纹一般为微裂纹,焊后对焊缝进行着
色检查时,短时间都发现不了,但经过一段时间后,才显露出来。
这说明裂纹非常微
细,但有时也能发展为较宽的宏观裂纹。
如果在单相奥氏体焊缝中加人固溶强化的
钼、钨、锰、铬、铌等元素,就可有效地抑制镍基合金焊缝多边化结晶的发展,从而
显著提高抗热裂纹能力。
限制线能量,避免采用大线能量焊接也有利于防止热裂纹的
产生。
此时注意,如果线能量过小,会加速焊缝的凝固结晶速度,更易形成多边化晶
界,在一定应力下有助于多边化裂纹的产生。
②液态金属流动性差,焊缝熔深浅
这是镍基合金的固有特性。
靠加大焊接电流不是解决此问题的办法,因为电流增
加会引起裂纹和气孔,降低接头的耐蚀性能,所以为了获得良好的焊缝成形,应采用
小摆动工艺,另外要加大坡口角度,减小坡口钝边。
2.镍基耐蚀合金的焊接要点
镍基合金一般可采用与奥氏体不锈钢相同的焊接方法进行焊接。
这里就最常用的
钨极气体保护焊和焊条电弧焊进行论述。
无论是何种焊接方法,焊前一定要彻底清理
焊区表面,镍基合金对污染物的危害极为敏感,母材应尽可能在固溶状态下焊接。
①钨极气体保护焊是应用最广泛的,几乎适合于任何一种可熔焊的镍基合金,
特别适合于薄件和小截面构件。
保护气体最常用的是氩气,它成本低,密度大,保护
效果好。
氩气中加5%氢气,有还原作用,一般只用于第一层焊道和单道焊,多层焊
的其余焊道可能要产生气孔。
氦气保护焊应用较少,但有如下特点,氦气导热大,向
熔池线能量比较大,能提高焊接速度,减少了气孔的可能性,但氦弧焊,电流小于
60A时,电弧不稳定。
钨极气体保护焊焊一般使用直流正接,采用高频引弧以及电流衰减的收弧技术。
在保证焊透的条件下,应采用较小的焊接线能量,多层焊时应控制层间温度,焊接析
出强化合金及热裂纹敏感性大的合金时,更要注意控制层间温度。
弧长尽量短,薄件
焊接时焊枪可不作摆动,但厚板多层焊时,为使熔敷金属与母材及前道焊缝充分熔
合,焊枪仍可适当的摆动。
为保证单面焊完全焊透需要用带凹形槽的铜衬垫,通以保
护气体进行反面保护。
为加强焊接区的保护效果,也可在焊嘴后侧加一辅助输入保护
气体的拖罩。
②使用焊条电弧焊时焊接镍基合金时,由于焊条含合金元素多,且要求防止热裂
纹,一般镍基合金焊条的药皮类型为碱性药皮,采用直流反接。
为了防止合金元素的
烧损和控制线能量,焊接时要求尽可能采用小规范,与同规格的不锈钢焊条相比,电
流可降低20%~30%。
由于液态金属的流动性差,为防止未熔合和气孔等缺陷,一
般要求在焊接过程中适当摆动,但不能过大。
在焊缝接口再引弧时,应采用反向引弧
技术,以利调整接口处焊缝平滑并且能有利于抑制气孔的发生。
采用逆向收弧,把弧
坑填满,防止弧坑裂纹,必要时要对弧坑进行打磨。
二、钛及钛合金的焊接
钛及钛合金具有良好的耐腐蚀性能,在氧化性、中性及有氯离子介质中,其耐腐
蚀性优于不锈钢,有时甚至为普通奥氏体不锈钢1Cr18Ni9Ti的10倍。
工业纯钛塑性
好,但强度较低,具有良好的低温性能,其线膨胀系数和热导率都不大,这都不会给
焊接带来困难。
钛合金的比强度大,又具有良好的韧性和焊接性,在航天工业中应用
最为广泛。
钛及钛合金在我国现行标准中按其退火态的组织分为α钛合金、β钛合金和
α+β钛合金三类,分别用TA、TB和TC表示。
在石化行业中的压力容器设备中,牌号
为TA2这种工业纯钛使用为居多。
1.钛及钛合金的焊接特点
①杂质元素的沾污引起脆化
钛是一种活性元素,特别是在焊接高温下非常容易吸收氮、氢、氧,从而使焊缝
的硬度、强度增加,塑性、韧性降低,引起脆化。
碳也会与钛形成硬而脆的TiC,易
引起裂纹。
因此,钛及钛合金焊接时必须进行有效的保护,防止空气或其他因素的污
染。
因此钛及钛合金焊接不能采用气焊或焊条电弧焊方法进行,否则接头满足不了焊
接质量要求,一般只能采用氩气保护或在真空下焊接。
②焊接相变引起的接头塑性下降
常用的工业纯钛为α合金,焊接时由于钛导热差、比热小、高温停留时间长、冷
却速度慢,易形成粗大结晶;若采用加速冷却,又易产生针状α组织,也会使塑性下
降。
③产生焊接裂纹
钛合金焊接时产生的焊接热裂纹的几率极小,只有当焊丝或母材质量不问题时才
可能产生热裂纹。
由氢引起的冷裂纹是钛合金焊接时应注意防止的,焊接时熔池和低
温区母材中的氢向热影响区扩散,引起热影响区含氢量增加,造成热影响区出现延迟
裂纹。
④气孔
钛及钛合金焊接时气孔是最常见的焊接缺陷。
焊丝或母材表面清理不干净或氩气
不纯都会造成气孔产生,因此保护气-氩气纯度要求在99.99%以上,焊丝及工件表
面酸洗、净水冲洗后烘干。
2.钛及钛合金的钨极氩弧焊
钛及钛合金焊接时采用最多的就是钨极氩弧焊,对于较厚的工件也可采用熔化极
氩弧焊,对于技术要求严格的航天工业中一些重要设备经常也采用真空电子束焊接。
①焊丝的选用。
焊丝的选用应使在正常焊接工艺下的焊缝在焊后状态的抗拉强度
不低于母材退火状态的标准抗拉强度下限值,焊缝焊后状态的塑性和耐蚀性能不低于
退火状态下的母材或与母材相当,焊接性能良好,能满足钛容器制造和使用的要求。
焊丝中的氮、氧、碳、氢、铁等杂质元素的标准含量上限值应大大低于母材中杂
质元素的标准含量上限值。
不允许从所焊母材上裁条充当焊丝,应采用JB/T4745-
2002《钛制焊接容器》中附录D中的焊丝用作钛容器用焊丝。
杂质元素含量不高于
JB/T4745-2002中附录D的其他标准的焊丝也可使用。
一般情况下可按表根据所焊母材牌号来选择相应的焊丝牌号,并通过JB/T4745-
2002中附录B的焊接工艺评定验证。
不同牌号的钛材相焊时,一般按耐蚀性能较好和强度级别较低的母材去选择焊丝材
料。
②保护气体的选用。
焊接用氩气纯度不应低于99.99%,露点不应高于-50℃,且
符合GB4842-1984的规定。
当瓶装氩气的压力低于0.5MPa时不宜使用。
③钨极。
钨极氩弧焊时推荐采用铈钨电极。
电极直径应根据焊接电流大小选
择,电极端部应为圆锥形。
钛及钛合金氩弧焊时,最关键的是要将焊接高温区与空气隔离开,为了有效地进
行保护,焊炬喷嘴、拖罩和背面保护装置通以适量流量的氩气是极其重要的。
焊缝及
近缝区颜色是衡量保护效果的标志,银白色、浅黄色表示保护效果好,深黄色为轻微
氧化,一般情况下还是允许的,金紫色表示中度氧化,深蓝色表示严重氧化,至于灰
白色是绝对不允许的,表示焊缝已经变质,必须报废重焊。
三、铝及铝合金的焊接
压力容器中常用纯铝、铝-锰合金和铝-镁合金。
铝锰合金仅可变形强化,其强度
比纯铝略高,成形工艺及耐蚀性、焊接性好。
铝镁合金仅可变形强化,其ω(Mg)一般
为0.5%~7.0%,与其他铝合金相比,铝镁合金具有中等强度,其延性、焊接性
能、耐蚀性良好。
铝在空气和氧化性水溶液介质中,表面产生致密的氧化铝钝化膜,因而在氧化性
介质中具有良好的耐蚀性。
铝在低温下与铁素体钢不同,不存在脆性转变,铝容器的
设计温度可达-269℃。
1.铝及铝合金焊接特点
铝极易氧化,在常温空气中即生成致密的A12O3薄膜,焊接时造成夹渣,氧化铝
膜还会吸附水分,焊接时会促使焊缝生成气孔。
焊接时,对熔化金属和高温金属应进
行有效的保护。
铝的线膨胀系数约为钢的2倍,铝凝固时的体积收缩率也比钢大得多,铝焊接时
熔池容易产生缩孔、缩松、热裂纹及较高的内应力。
铝及铝合金液体熔池易吸收氢等气体,当焊后冷却凝固过程中来不及析出,在焊
缝中形成气孔。
当母材为变形强化或固溶时效强化时,焊接热影响区强度将下降。
2.焊接方法
铝及铝合金适用的方法很多,压力容器上施焊时,经常采用钨极氩弧焊和熔化极
气体保护焊,这两种焊接方法热量比较集中,电弧燃烧稳定,由于采用隋性气体,保
护良好,容易控制杂质和水分来源,减少热裂纹和气孔的发生,焊缝质量优良,钨极
氩弧焊一般用于薄板,熔化极气体保护焊用于厚板。
3.焊丝材料
选用的焊丝应使焊缝金属的抗拉强度不低于母材(非热处理强化铝为退火状态,热
处理强化铝为指定值)的标准抗拉强度下限值或指定值,并使焊缝金属的塑性和耐蚀
性不低于或接近于母材,或满足图样要求。
为保证焊缝的耐蚀性,在焊接纯铝时宜用纯度与母材相近或纯度比母材稍高的焊
丝。
在焊接铝镁合金或铝锰合金等耐蚀铝合金时,宜采用含镁量或含锰量与母材相近
或比母材稍高的焊丝。
焊丝可从GB/T10858-1989《铝及铝合金焊丝》中选取,也可从化学成分与变形
铝及铝合金相同(符合GB/T3190-1996《变形铝及铝合金化学成分》)的丝材中选取,
如按(GB/T3197-2001《焊条用铝合金线》。
常用的保护气体有氩气和氮气,其气体纯度应大于99.9%。
由于铈钨极化学稳定性好,阴极斑点小,压降低,烧损少,易于引弧,电弧稳定
性好。
宜选用铈钨极。
三、铜及铜合金的焊接
常用的铜及铜合金有四种:
纯铜,黄铜,青铜和白铜。
在压力容器中纯铜与黄铜
使用较多。
纯铜是ω(Cu)不低于99.5%的工业纯铜,具有良好的导电性、导热性,良好的常
温和低温塑性,以及对海水等的耐腐蚀性,纯铜中的杂志如氧、硫、铋等都不同程度
地降低纯铜的优良性能,增加材料的冷脆性和接头中出现热裂纹的倾向。
黄铜系铜和
锌组成的二元合金,黄铜与纯铜强度、硬度和耐腐蚀能力都高,且具有一定塑性,能
很好承受热加工和冷加工,ω(Zn)在<30%~40%的黄铜具有α相与少量的β相,因
而提高了强度、塑性、耐蚀性、但对焊接性不利。
1.铜及铜合金焊接特点
铜及铜合金导热率高,线胀系数和收缩率大,当焊接线能量不足时,则容易产生
未熔合、未焊透,焊后变形也较严重,外观成形差。
焊接时,铜能与其中杂质生成多
种低熔点共晶,在焊接应力作用下产生热裂纹,杂质中以氧的危害性最大。
熔焊铜及铜合金时,由于溶解的氢和氧化还原反应引起气孔,几乎分布在焊缝的
各个部位。
同时,由于晶粒严重长大,杂质和合金元素的掺人,有用合金元素的氧
化、蒸发,使焊接接头性能发生很大的变化。
2.焊接方法
焊接铜及铜合金需要大功率、高能束的熔焊热源,热效率越高,能量越集中愈有
利,不同厚度的材料对于不同焊接方法有其适应性,薄板焊接以钨极氩弧焊、焊条电
弧焊和气焊为好,中板以熔化极气体保护焊和电子束焊较合适,厚板则建议使用埋弧
焊、MIG焊和电渣焊。
3.焊接材料
①焊条
焊条电弧焊用焊条分为纯铜、青铜两类,由于黄铜中的锌容易蒸发,因而极少采
用焊条电弧焊。
纯铜焊条型号ECu为低氢型药皮,用于焊接脱氧或无氧铜结构件,在
大气及海水中具有良好的耐腐蚀性。
②埋弧焊用焊丝与焊剂
埋弧焊的特点是电热效率高,对熔池的保护效果好。
大、中厚度铜焊件的焊接工
艺与钢基本相同,可选用高硅高锰焊剂HJ431,但可能发生合金元素向焊缝过渡,对
接头性能要求高的焊件宜选用HJ260、HJ150。
焊丝则选用纯铜焊丝、青铜焊丝、焊
接纯铜和黄铜。
③气体保护焊用焊丝
铜薄板和中板焊接,使用气保焊逐渐取代气焊、焊条电弧焊,电极一般采用钍钨
极(EWTh-2)。
焊接纯铜,一般选用含有ω(Si)0.5%,ω(P)0.15%或ω(Ti)0.3%~
0.5%脱氧剂的无氧铜焊丝,如HSCu。
焊接普通黄铜,采用无氧铜加脱氧剂的锡青铜
焊丝,如HSCuSn。
对高强度黄铜则采用青铜加脱氧剂的硅青铜焊丝或铝青铜焊丝,
如:
HSCuAl、HSCuSi等。
保护气体则选用氩气(Ar)或Ar+He(Ar+He混合比50/50或30/70),采用Ar+He混合
气体的最大优点是可以改善焊缝金属的润湿性,提高焊接质量。
由于氦气保护时输入
热量比氩气保护时大,故可降低预热温度。
4.焊接工艺
①焊前要预热或在焊接过程中采取同步加热的措施。
②严格限制铜中的杂质含量,通过焊丝加人硅、锰、磷等合金元素,增加对焊
缝的脱氧能力,选用能获得α+β组织的焊丝等措施防止焊接接头裂纹与减少气孔。
③控制焊后冷却速度,防止焊接变形。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有色金属 压力容器 焊接 技术 应用
