湿度传感器.docx
- 文档编号:24324025
- 上传时间:2023-05-26
- 格式:DOCX
- 页数:14
- 大小:121.29KB
湿度传感器.docx
《湿度传感器.docx》由会员分享,可在线阅读,更多相关《湿度传感器.docx(14页珍藏版)》请在冰豆网上搜索。
湿度传感器
湿度传感器
引言
很多行业中,如发电、纺织、食品、医药、仓储、农业等,对温度、湿度参量的要求都非常严格.目前,在低温条件下(通常指100%以下),湿度的测量已经相对成熟,有商品化产品,并广泛应用于各种行业.
另有许多行业需要在高温环境下测量湿度,如航空航天、机车舰船、发电变电、冶金矿山、计量科研、电厂、陶瓷、工业管道、发酵环境实验箱、高温实验箱、高炉等场合.这时,湿度测量结果往往不如低温环境下的测量结果理想.另外,在恶劣条件下工作,例如气流速度、温度、湿度变化非常剧烈或测量污染严重的工业气体时,将使精度大大降低…。
随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越来越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。
湿度传感器产品及湿度测量属于90年代兴起的行业。
如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。
湿敏元件是最简单的湿度传感器。
湿敏元件主要有电阻式、电容式两大类。
湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。
湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。
当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。
1湿度定义
空气的干湿程度叫做湿度,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示.通常空气的温度越高,最大湿度就越大。
干空气与湿空气(DryairandWetair)
通常把不包含水汽的空气称为干空气,把包含干空气与水蒸汽的混合气体称为湿空气。
饱和蒸汽压(Saturationpressureofwatervapor)
由饱和蒸汽产生的部分压力,称为该温度下的饱和蒸汽压。
饱和蒸汽压仅与空气的温度有关,不受压力影响。
水饱和蒸汽压与温度关系如下图:
绝对湿度(Absolute humidity)
绝对湿度是指在一定温度和压力条件下,每单位体积(1m3)的混合气体中所含水蒸气的质量(g),单位为g/m3,一般用符号AH表示。
它的极限是饱和状态下的最高湿度.绝对湿度只有与温度联系起来才有意义,因为空气中湿度随温度而变化.其表达式为:
式中的M为水汽的摩尔质量,R为理想气体常数,T为空气的绝对温度。
相对湿度(Relative humidity)
相对湿度是指气体的绝对湿度与同一温度下达到饱和状态的绝对湿度之比,常表示为%RH,亦即
式中Pw只为与待测空气温度T同温时水的饱和水气压。
由于水汽的饱和气压会随着气温增高而增加,因此相对湿度相同的情况下,气温高时空气中的水汽重量比气温低时大,平时我们说空气很湿,就是表示空气相对湿度较大。
根据气体定律,水蒸气的质量正比于水蒸气分压,所以,气体中的水蒸气分压(e)与该温度气体饱和水蒸气压(es)的比,用百分比表示。
表示∶RH=e/es×100%。
相对湿度最常用。
相对湿度为100%的空气就是水蒸气饱和的空气.相对湿度同样也与温度联系起来才有意义.通过相对湿度和温度也可以换算出表示温度的其他参数.相对湿度给出大气的潮湿程度,它是一个无量纲的量,在实际使用中多使用相对湿度这一概念。
露点与霜点(DewPointandFrostPoint)
湿空气在气压不变条件下使其所含水蒸汽达到饱和状态时所必须冷却到的温度称为露点温度或露点。
若露点温度低于0℃,水汽实际将凝结成霜,称为霜点温度或霜点。
2湿度传感器的分类
湿度传感器,基本形式都为利用湿敏材料对水分子的吸附能力或对水分子产生物理效应的方法测量湿度。
有关湿度测量,早在16世纪就有记载。
许多古老的测量方法,如干湿球温度计、毛发湿度计和露点计等至今仍被广泛采用。
现代工业技术要求高精度、高可靠和连续地测量湿度,因而陆续出现了种类繁多的湿敏元件。
湿敏元件主要分为二大类:
水分子亲和力型湿敏元件和非水分子亲和力型湿敏元件。
利用水分子有较大的偶极矩,易于附着并渗透入固体表面的特性制成的湿敏元件称为水分子亲和力型湿敏元件。
例如,利用水分子附着或浸入某些物质后,其电气性能(电阻值、介电常数等)发生变化的特性可制成电阻式湿敏元件、电容式湿敏元件;利用水分子附着后引起材料长度变化,可制成尺寸变化式湿敏元件,如毛发湿度计。
金属氧化物是离子型结合物质,有较强的吸水性能,不仅有物理吸附,而且有化学吸附,可制成金属氧化物湿敏元件。
这类元件在应用时附着或浸入被测的水蒸气分子,与材料发生化学反应生成氢氧化物,或一经浸入就有一部分残留在元件上而难以全部脱出,使重复使用时元件的特性不稳定,测量时有较大的滞后误差和较慢的反应速度。
目前应用较多的均属于这类湿敏元件。
另一类非亲和力型湿敏元件利用其与水分子接触产生的物理效应来测量湿度。
例如,利用热力学方法测量的热敏电阻式湿度传感器,利用水蒸气能吸收某波长段的红外线的特性制成的红外线吸收式湿度传感器等。
2.1电解质湿敏传感器
利用潮解性盐类受潮后电阻发生变化制成的湿敏元件。
最常用的是电解质氯化锂(LiCl)。
从1938年顿蒙发明这种元件以来,在较长的使用实践中,对氯化锂的载体及元件尺寸作了许多改进,提高了响应速度和扩大测湿范围。
氯化锂湿敏元件的工作原理是基于湿度变化能引起电介质离子导电状态的改变,使电阻值发生变化。
结构形式有顿蒙式和含浸式。
顿蒙式氯化锂湿敏元件是在聚苯乙烯圆筒上平行地绕上钯丝电极,然后把皂化聚乙烯醋酸酯与氯化锂水溶液混合液均匀地涂在圆筒表面上制成,测湿范围约为相对湿度30%。
含浸式氯化锂湿敏元件是由天然树皮基板用氯化锂水溶液浸泡制成的。
植物的髓脉具有细密的网状结构,有利于水分子的吸入和放出。
70年代研制成功玻璃基板含浸式湿敏元件,采用两种不同浓度的氯化锂水溶液浸泡多孔无碱玻璃基板(孔径平均500埃),可制成测湿范围为相对湿度20~80%的元件。
氯化锂湿敏电阻
结构如右图:
氯化锂湿度电阻特性曲线如左图
氯化锂元件具有滞后误差较小,不受测试环境的风速影响,不影响和破坏被测湿度环境等优点,但因其基本原理是利用潮解盐的湿敏特性,经反复吸湿、脱湿后,会引起电解质膜变形和性能变劣,尤其遇到高湿及结露环境时,会造成电解质潮解而流失,导致元件损坏。
2.2高分子材料湿敏传感器
利用有机高分子材料的吸湿性能与膨润性能制成的湿敏元件。
吸湿后,介电常数发生明显变化的高分子电介质,可做成电容式湿敏元件。
吸湿后电阻值改变的高分子材料,可做成电阻变化式湿敏元件。
常用的高分子材料是醋酸纤维素、尼龙和硝酸纤维素等。
高分子湿敏元件的薄膜做得极薄,一般约5000埃,使元件易于很快的吸湿与脱湿,减少了滞后误差,响应速度快。
这种湿敏元件的缺点是不宜用于含有机溶媒气体的环境,元件也不能耐80℃以上的高温。
2.3、金属氧化物膜湿敏传感器
许多金属氧化物如氧化铝、四氧化三铁、钽氧化物等都有较强的吸脱水性能,将它们制成烧结薄膜或涂布薄膜可制作多种湿敏元件。
把铝基片置于草酸、硫酸或铬酸电解槽中进行阳极氧化,形成氧化铝多孔薄膜,通过真空蒸发或溅射工艺,在薄膜上形成透气性电极。
这种多孔质的氧化铝湿敏元件互换性好,低湿范围测湿的时间响应速度较快,滞后误差小,常用于高空气球上测湿。
四氧化三铁胶体的优点是固有电阻低,长期置于大气环境表面状态不会变化,胶体粒子间相互吸引粘结紧密等。
它是一种价廉物美,较早投入批量生产的湿敏元件,在湿度测量和湿度控制方面都有大量应用。
2.4半导体陶瓷湿度传感器
如MgCr2O4-TiO2湿敏传感器.它们主要利用陶瓷烧结体微结晶表面在吸湿和脱湿过程中电极之间电阻的变化来检测相对湿度。
以MgCr2O4-TiO2为例说明其典型结构.如图所示,在MgCr2O4-TiO2:
陶瓷片的两面,设置高金电极,并用掺金玻璃粉将引出线与金电极烧结在一起.在半导体陶瓷片的外面,安放一个由镍铅丝烧制两成的加热清洗圈,谈便对元件进行经常加热清洗,排除有害气氛对元件的污染.元件安放在一种高度致密的、疏水性的陶瓷底片上.为消除底座上测量电极2程3之间由于吸温和污染而引起漏电.在电极2和3的四周设置金短路环。
MgCr2O4-TiO2湿敏元件结构
陶瓷烧结体微结晶表面对水分子进行吸湿或脱湿时,引起电极间电阻值随相对湿度成指数变化,从而湿度信息转化为电信号。
显然,这类传感器适合于高温和高湿环境中使用,也是目前在高温环境中测湿的少数有效传感器之一。
2.5、热敏电阻式湿度传感器
利用热敏电阻作湿敏元件。
传感器中有组成桥式电路的珠状热敏电阻R1和R2,电源供给的电流使R1、R2保持在200℃左右的温度。
其中R2装在密封的金属盒内,内部封装着干燥空气,R1置于与大气相接触的开孔金属盒内。
将R1先置于干燥空气中,调节电桥平衡,使输出端A、B间电压为零,当R1接触待测含湿空气时,含湿空气与干燥空气产生热传导差,使R1受冷却,电阻值增高,A、B间产生输出电压,其值与湿度变化有关。
热敏电阻式湿敏传感器的输出电压与绝对湿度成比例,因而可用于测量大气的绝对湿度。
传感器是利用湿度与大气导热率之间的关系作为测量原理的,当大气中混入其他特种气体或气压变化时,测量结果会有程度不同的影响。
此外,热敏电阻的位置对测量也有很大影响。
但这种传感器从可靠性、稳定性和不必特殊维护等方面来看,很有特色,现已用于空调机湿度控制,或制成便携式绝对湿度表、直读式露点计、相对湿度计、水分计等。
2.6、红外线吸收式湿度传感器
利用水蒸气能吸收某波段的红外线制成的湿度传感器。
60年代中期,美国气象局以波长为1.37微米和1.25微米的红外光分别作敏感光束和参考光束,研制成红外线吸收式湿度传感器。
这种传感器采用装有λ0滤光片和λ滤光片的旋转滤光片,当光源通过旋转滤光片时,轮流地选择波长为λ0和λ的红外光束,两条光束通过被测湿度的样气抵达光敏元件,由于波长为λ0的光束不被水蒸气吸收,其光强仍为I0,波长为λ的光束被水蒸气部分吸收,光强衰减为I。
根据光强度的变化,将光敏元件上的信号处理后可获得正比于水蒸气浓度c的电信号。
红外线吸收式湿度传感器属非水分子亲和力型湿敏元件,测量精度和灵敏度较高,能够测量高温或密封场所的气体湿度,也能解决其他湿度传感器不能解决的大风速或通风孔道环境中的湿度测量问题。
缺点是结构复杂,光路系统存在温度漂移现象。
红外线吸收式适度传感器结构
2.7、微波式湿度传感器
利用微波电介质共振系统的品质因数随湿度变化的机理制成的传感器。
微波共振器采用氧化镁-氧化钙-二氧化钛陶瓷体,共振器与耦合环构成共振系统,含水蒸气的气体进入传感器腔体后改变原共振系统的品质因数,其微波损失量与湿度成线性关系。
这种传感器的测湿范围为相对湿度40~95%,在温度0~50℃时,精度可达±2%。
微波式湿度传感器具有非水分子亲和力型湿敏元件的优点,又由于采用陶瓷材料作共振系统,故可加热清洗,且坚固耐用。
缺点是对微波电路稳定性要求甚高。
2.8、超声波式湿度传感器
超声波在空气中的传播速度与温度、湿度有关,利用这一特性可制成超声波式湿度传感器。
传感器由超声波气温计和铂丝电阻测温计组成,前者的测量数据与湿度有关,后者的测量数据只与温度有关,按照超声波在干燥空气和含湿空气中的传播速度可计算出空气的绝对湿度。
超声波湿度传感器有很多优点,它的测湿数据比较准确,响应速度快,可以测出某一极小范围的绝对湿度而不受辐射热的影响。
这种传感器尚处于研制阶段。
3湿度传感器的特点
国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。
湿度传感器具有如下特点:
(1)精度和长期稳定性
湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。
在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。
(2)湿度传感器的温度系数
湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般在0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。
温漂非线性,这需要在电路上加温度补偿式。
采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。
湿度传感器工作的温度范围也是重要参数。
多数湿敏元件难以在40℃以上正常工作。
(3)湿度传感器的供电
金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。
必须是交流电供电。
(4)互换性
目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,取得了较好效果。
(5)湿度校正
校正湿度要比校正温度困难得多。
温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。
4湿度传感器主要技术参数
最大参数(Ta=25℃)
参数
符号
参数值
单位
工作温度
Ta
-40~100
℃
储存温度
Tstg
-40~125
℃
供电电压
Vs
10
Vac
湿度范围
RH
0~100
%RH
焊接时间@T=260℃
t
10
S%
特征参数(Ta=25℃,@10KH,)
特征参数
符号
Min
Typ
Max
单位
湿度测量范围
RH
1
99
5
供电电压
Vs
5
10
V
标称电容@55%RH
C
177
180
183
pF
温度效应
Tcc
0.04
pF/℃
平均灵敏度(33%~75%RH)
△C/%RHH
0.34
pF/%RH
漏电流
Ix
1
nA
恢复时间@150小时结露
tr
10
S
迟滞
+/-1.5
%
长时间稳定性
0.5
%RH/yr
反应时间
ta
5
S
曲线精度(10%~90%)
+/-2
%RH
5湿度传感器的应用
任何行业的工作都离不开空气,而空气的湿度又与工作、生活、生产有直接联系,使湿度的监测与控制越来越显得重要。
湿度传感器的应用主要有如下几个方面:
(1) 温室养殖
现代农林畜牧各产业都有相当数量的温室,温室的湿度控制与温度控制同样重要,把湿度控制在农作物、树木、畜禽等生长适宜的范围,是减少病虫害、提高产量的条件之一。
(2) 气候监测
天气测量和预报对工农业生产、军事及人民生活和科学实验等方面都有重要意义,因而湿度传感器是必不可少的测湿设备,如树脂膨散式湿度传感器已用于气象气球测湿仪器上。
(3)精密仪器的使用保护
许多精密仪器、设备对工作环境要求较高。
环境湿度必须控制在一定范围内,以保证它们的正常工作,提高工作效率及可靠性。
如电话程控交换机工作湿度在55%±10%较好。
温度过高会影响绝缘性能,过低易产生静电,影响正常工作。
(4)物品储藏
各种物品对环境均有一定的适应性。
湿度过高过低均会使物品丧失原有性能。
如在高湿度地区,电子产品在仓库的损害严重,非金属零件会发霉变质,金属零件会腐蚀生锈。
(5)工业生产
在纺织、电子、精密机器、陶瓷工业等部门,空气湿度直接影响产品的质量和产量,必须有效地进行监测调控。
6湿度传感器的发展方向
理想的湿敏传感器的性能要求是适于在宽温、湿范围内使用,测量精度要高;使用寿命长,稳定性好;响应速度快,湿滞回差小;灵敏度高,线性好,溢度系数小;制造工艺简单,易于批量生产、转换电路简单,成本低;抗腐蚀,耐低温和高温等。
湿敏传感器正从简单的湿敏组件向集成化、无损化检测、多参数检测的方向迅速发展,为开发新型湿度测控系统创造了有利条件,也将湿度测量技术提高到新的水平.
对高温环境下的测湿,半导体传感器由于其天然的耐高温特性和容易集成的优点,将成为高温湿度传感器的主流,而光纤高温湿度传感器由于其非接触测量特性,将会成为另一种很有应用潜力的传感器件,但是目前只有低温下的结果,若向高温范围应用,还要研究更有效的方法拓展测量范围。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湿度 传感器