南昌大学电子设计实验实验报告讲解.docx
- 文档编号:2430655
- 上传时间:2022-10-29
- 格式:DOCX
- 页数:20
- 大小:2.25MB
南昌大学电子设计实验实验报告讲解.docx
《南昌大学电子设计实验实验报告讲解.docx》由会员分享,可在线阅读,更多相关《南昌大学电子设计实验实验报告讲解.docx(20页珍藏版)》请在冰豆网上搜索。
南昌大学电子设计实验实验报告讲解
实验报告
实验课程:
电子线路设计与测试
学生姓名:
学号:
专业班级:
指导老师:
年月日
实验一 :
直流稳压电源设计
实验二 :
信号发生器设计
实验三 :
音频功率放大电路设计
实验四 :
温度控制电路设计
实验五:
实物制作
实验一、直流稳压电源设计
一、设计任务
设计一直流稳压电源并进行仿真。
二、设计要求
基本性能指标:
(A1)输出直流电压+5V,负载电流200mA。
(B1)+3V~+9V,连续可调;(B2)IOmax=200mA;(B3)稳压系数Sr≤5×10-3;(B4)△UO≤5mV。
扩展性能指标:
扩展直流稳压电源的输出电流使10mA≤IO≤1.5A。
三、设计方案
直流稳压电源设计框图和直流稳压电源基本电路分别如图1和图2所示:
图1直流稳压电源框图
图2直流稳压电源基本电路
主要原理是:
电源变压器将交流电网220V的电压降压为所需的交流电压,然后通过整流电路将交流电压变成单极性电压,再通过滤波电路加以滤除,得到平滑的直流电压。
但这样的电压还随电网电压波动(一般有±10%左右的波动)、负载和温度的变化而变化。
因而在整流、滤波电路之后,还需接稳压电路。
稳压电路的作用是当电网电压波动、负载和温度变化时,维持输出直流电压稳定。
一般情况下,选用降压的电源变压器。
整流电路主要有半波整流电路、桥式整流电路和全波整流电路,一般情况下多用桥式整流电路,桥式整流输出脉动电压平均值为:
通过每只二极管的平均电流为:
每只二极管承受的最大反向电压为:
滤波电路亦可分为电容滤波、电感滤波、Π型滤波等多种滤波电路,而在小功率电源电路设计中多用电容滤波电路。
当在接上滤波电容后,UO会明显增大,其大小与时间常数RLC有关,通常情况下,RLC=(3~5)T/2(T为电网电压周期)。
稳压电路有二极管稳压电路、串联型稳压电路和集成稳压电路等,可根据具体要求选择合适的电路形式(具体原理可查阅相关资料)。
稳压电源的性能指标:
最大输出电流IOmax:
电源的输出电压UO应不随负载电流IOL而变化,随着负载RL阻值的减少,IOL增大,UO减小,当UO的值下降5%时,此时流经负载的电流定义为IOmax(记下IOmax后迅速增大RL,以减小稳压电源的功耗)。
输出电压:
指稳压电源的输出电压,也是稳压器的输出电压。
当输入电压为额定值时,可直接用电压表测量。
纹波电压:
指叠加在输出电压UO上的交流分量。
可用示波器观测其峰-峰值或者有效值。
稳压系数:
指在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即
输出电阻:
稳压电路输入电压一定时,输出电压变化量△UO与输出电流变化量△IO之比,即
(UI为常数)
四、电路仿真与分析
电路图为
可调(3V——9V)的直流稳压电源
3V
5V
9V
(1)根据设计所要求的性能指标,选择集成三端稳压器。
因为要求输出电压可调,所以选择三端可调式集成稳压器,可调式集成稳压器,常见主要有CW317、CW337、LM317、LM337。
317系列稳压器输出连续可调的正电压,337系列稳压器输出连可调的负电压,可调范围为3V~9V,最大输出电流为1.5A。
稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。
其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。
输出电压表达式为:
式中,1.25是集成稳压块输出端与调整端之间的固有参考电压,此电压加于给定电阻两端,将产生一个恒定电流通过输出电压调节电位器,一般使用精密电位器,与其并联的电容器C可进一步减小输出电压的纹波。
输出电压可调范围:
3V~9V
输出负载电流:
1.5A
能满足设计要求,故选用LM317组成稳压电路。
电路中滤波电容承受的最高电压为,所以所选电容器的耐压应大于17V。
注意:
因为大容量电解电容有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常并入瓷介质小容量电容用来抵消电感效应,抑制高频干扰。
文波电压也满足要求。
实验二、信号发生器设计
一、设计任务
设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。
二、设计要求
基本性能指标:
(1)频率范围100Hz~1kHz;
(2)输出电压:
方波Up-p≤24V,三角波Up-p=6V,正弦波Up-p>1V。
扩展性能指标:
频率范围分段设置10Hz~100Hz,100Hz~1kHz,1kHz~10kHz;波形特性方波tr<30us(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。
三、设计方案
信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。
图1信号发生器组成框图
主要原理是:
由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。
方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。
图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
其工作原理如图3所示。
图2方波和三角波产生电路
图3比较器传输特性和波形
利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。
其基本工作原理如图5所示。
为了使输出波形更接近正弦波,设计时需注意:
差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值Vm应接近晶体管的截止电压值。
图4三角波→正弦波变换电路
图5三角波→正弦波变换关系
在图4中,RP1调节三角波的幅度,RP2调整电路的对称性,并联电阻RE2用来减小差分放大器的线性区。
C1、C2、C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。
波形发生器的性能指标:
①输出波形种类:
基本波形为正弦波、方波和三角波。
②频率范围:
输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。
③输出电压:
一般指输出波形的峰-峰值Up-p。
④波形特性:
表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间tr。
四、电路仿真与分析
信号发生器设计方案有多种,本次设计中采用先是产生方波、三角波、再将三角波转换为正弦波的方案。
1、方波产生电路
2、三角波发生器电路
3、正弦波发生器
利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。
为了使输出波形更接近正弦波,设计时需注意:
差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值Vm应接近晶体管的截止电压值。
电路图如下:
总的电路图为:
输出最低频率:
中间频率:
最高频率:
实验三、音频功率放大电路设计
一、设计任务
设计一小功率音频放大电路并进行仿真。
二、设计要求
已知条件:
电源V或V;输入音频电压峰值为5mV;8/0.5W扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干。
基本性能指标:
Po200mW(输出信号基本不失真);负载阻抗RL=8;截止频率fL=300Hz,fH=3400Hz
扩展性能指标:
Po1W(功率管自选),我未达到扩展性能指标;
三、设计方案
音频功率放大电路基本组成框图如下:
音频功放组成框图
由于话筒的输出信号一般只有5mV左右,通过话音放大器不失真地放大声音信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载RL(扬声器)提供一定的输出功率。
应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。
基于运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。
功率放大器可采用使用最广泛的OTL(OutputTransformerless)功率放大电路和OCL(OutputCapacitorless)功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。
对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。
由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。
推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。
在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8电阻替代扬声器。
由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。
如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。
四、电路仿真与分析
仿真电路图如下:
输出参数:
实验四、温度控制电路设计
一、设计任务
设计一温度控制电路并进行仿真。
二、设计要求
基本功能:
利用AD590作为测温传感器,TL为低温报警门限温度值,TH为高温报警门限温度值。
当T小于TL时,低温警报LED亮并启动加热器;当T大于TH时,高温警报LED亮并启动风扇;当T介于TL、TH之间时,LED全灭,加热器与风扇都不工作(假设TL=20℃,TH=30℃)。
扩展功能:
用LED数码管显示测量温度值(十进制或十六进制均可)。
三、设计方案
AD590是美国ANALOGDEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。
在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1µA/K。
AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。
低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。
应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。
主要特性:
流过器件的电流(μA)等于器件所处环境的热力学温度(K)度数;AD590的测温范围为-55℃~+150℃;AD590的电源电压范围为4~30V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。
基本使用方法如右图。
AD590的输出电流是以绝对温度零度(-273℃)为基准,每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其输出电流Iout=(273+25)=298μA。
Vo的值为Io乘上10K,以室温25℃而言,输出值为10K×298μA=2.98V。
测量Vo时,不可分出任何电流,否则测量值会不准。
温度控制电路设计框图如下:
温度控制电路框图
由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。
通过温度校正电路得到实际摄氏温度电压值(可适当放大到几
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 南昌大学 电子设计 实验 报告 讲解