五年级思维训练及答案.docx
- 文档编号:24203181
- 上传时间:2023-05-25
- 格式:DOCX
- 页数:13
- 大小:24.29KB
五年级思维训练及答案.docx
《五年级思维训练及答案.docx》由会员分享,可在线阅读,更多相关《五年级思维训练及答案.docx(13页珍藏版)》请在冰豆网上搜索。
五年级思维训练及答案
五年级思维训练及答案
【篇一:
五年级数学思维训练100题及答案(吐血推荐)】
2.(9999+9997+?
+9001)-(1+3+?
+999)
解:
原式=(9999-999)+(9997-997)+(9995-995)+?
?
+(9001-1)
=9000+9000+?
?
.+9000(500个9000)
=4500000
=19991998-19981998
=10000
因此原式=1
6.297+293+289+?
+209
解:
(209+297)*23/2=5819
7.计算:
解:
原式=(3/2)*(4/3)*(5/4)*?
*(100/99)*(1/2)*(2/3)*(3/4)*?
*(98/99)
=50*(1/99)=50/99
8.
解:
原式=(1*2*3)/(2*3*4)=1/4
9.有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:
7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
10.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:
第二组有多少个数?
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
解:
第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
13.妈妈每4天要去一次副食商店,每5天要去一次百货商店。
妈妈平均每星期去这两个商店几次?
(用小数表示)
14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:
7。
15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。
已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个?
16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。
问:
甲、乙两班谁将获胜?
解:
快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
17.轮船从a城到b城需行3天,而从b城到a城需行4天。
从a城放一个无动力的木筏,它漂到b城需多少天?
18.小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的a处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在a处相遇。
小红和小强两人的家相距多少米?
解:
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。
由
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
19.小明和小军分别从甲、乙两地同时出发,相向而行。
若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。
甲、乙两地相距多少千米?
20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
21.甲、乙两车分别沿公路从a,b两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中c站的时刻分别为5:
00和16:
00,两车相遇是什么时刻?
22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
解:
快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
23.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:
两人每秒各跑多少米?
解:
甲乙速度差为10/5=2
所以甲每秒跑6米,乙每秒跑4米。
24.甲、乙、丙三人同时从a向b跑,当甲跑到b时,乙离b还有20米,丙离b还有40米;当乙跑到b时,丙离b还有24米。
问:
(1)a,b相距多少米?
(2)如果丙从a跑到b用24秒,那么甲的速度是多少?
解:
解:
(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度
25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。
已知公共汽车从始发站每次间隔同样的时间发一辆车,问:
相邻两车间隔几分?
10(a-b)=20(a-3b),
解得a=5b,即车速是小光速度的5倍。
小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。
26.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?
27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。
问:
(1)火车速度是甲的速度的几倍?
(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?
解:
(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;
28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。
求甲、乙两地的距离。
29.完成一件工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。
问:
甲、乙单独干这件工作各需多少天?
解:
甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?
31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。
这本书共有多少页?
解:
开始读了3/7后来总共读了5/8
33/(5/8-3/7)=33/(11/56)=56*3=168页
32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。
如果甲做3时后由乙接着做,那么还需多少时间才能完成?
解:
甲做2小时的等于乙做6小时的,所以乙单独做需要
6*3+12=30(小时)甲单独做需要10小时
因此乙还需要(1-3/10)/(1/30)=21天才可以完成。
33.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。
这批零件共有多少个?
解:
甲和乙的工作时间比为4:
5,所以工作效率比是5:
4
工作量的比也5:
4,把甲做的看作5份,乙做的看作4份
那么甲比乙多1份,就是20个。
因此9份就是180个
所以这批零件共180个
34.挖一条水渠,甲、乙两队合挖要6天完成。
甲队先挖3天,乙队接着
解:
根据条件,甲挖6天乙挖2天可挖这条水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙单独挖需要10天。
甲单独挖需要1/(1/6-1/10)=15天。
【篇二:
五年级数学思维训练100题及答案】
2.(9999+9997+…+9001)-(1+3+…+999)
解:
原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)
=9000+9000+…….+9000(500个9000)
=4500000
=19991998-19981998
=10000
因此原式=1
6.297+293+289+…+209
解:
(209+297)*23/2=5819
7.计算:
解:
原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/99
8.
解:
原式=(1*2*3)/(2*3*4)=1/4
9.有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:
7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
10.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:
第二组有多少个数?
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
解:
第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
商店几次?
(用小数表示)
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:
7。
15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。
已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个?
16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。
问:
甲、乙两班谁将获胜?
解:
快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
17.轮船从a城到b城需行3天,而从b城到a城需行4天。
从a城放一个无动力的木筏,它漂到b城需多少天?
18.小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的a处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在a处相遇。
小红和小强两人的家相距多少米?
解:
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。
由
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
21.甲、乙两车分别沿公路从a,b两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中c站的时刻分别为5:
00和16:
00,两车相遇是什么时刻?
22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
解:
快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
23.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:
两人每秒各跑多少米?
解:
甲乙速度差为10/5=2
速度比为(4+2):
4=6:
4
所以甲每秒跑6米,乙每秒跑4米。
24.甲、乙、丙三人同时从a向b跑,当甲跑到b时,乙离b还有20米,丙离b还有40米;当乙跑到b时,丙离b还有24米。
问:
(1)a,b相距多少米?
(2)如果丙从a跑到b用24秒,那么甲的速度是多少?
解:
解:
(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度
25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。
已知公共汽车从始发站每次间隔同样的时间发一辆车,问:
相邻两车间隔几分?
10(a-b)=20(a-3b),
解得a=5b,即车速是小光速度的5倍。
小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。
26.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?
27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。
问:
(1)火车速度是甲的速度的几倍?
(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?
解:
(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;
28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。
求甲、乙两地的距离。
29.完成一件工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。
问:
甲、乙单独干这件工作各需多少天?
解:
甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?
31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。
这本书共有多少页?
解:
开始读了3/7后来总共读了5/8
33/(5/8-3/7)=33/(11/56)=56*3=168页
32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。
如果甲做3时后由乙接着做,那么还需多少时间才能完成?
解:
甲做2小时的等于乙做6小时的,所以乙单独做需要
6*3+12=30(小时)甲单独做需要10小时
因此乙还需要(1-3/10)/(1/30)=21天才可以完成。
33.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。
这批零件共有多少个?
解:
甲和乙的工作时间比为4:
5,所以工作效率比是5:
4
工作量的比也5:
4,把甲做的看作5份,乙做的看作4份
那么甲比乙多1份,就是20个。
因此9份就是180个
所以这批零件共180个
34.挖一条水渠,甲、乙两队合挖要6天完成。
甲队先挖3天,乙队接着
解:
根据条件,甲挖6天乙挖2天可挖这条水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙单独挖需要10天。
甲单独挖需要1/(1/6-1/10)=15天。
35.修一段公路,甲队独做要用40天,乙队独做要用24天。
现在两队同时从两端开工,结果在距中点750米处相遇。
这段公路长多少米?
37.
解:
三角形aob和三角形doc的面积和为长方形的50%
所以三角形aob占32%
38.
解:
1/2*1/3=1/6
所以三角形abc的面积是三角形aed面积的6倍。
【篇三:
人教版五年级上册数学思维训练100题及解答】
2.(9999+9997+…+9001)-(1+3+…+999)
解:
原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)
=4500000
=19991998-19981998
=10000
因此原式=1
6.297+293+289+?
+209
解:
(209+297)*23/2=5819
7.计算:
解:
原式=(3/2)*(4/3)*(5/4)
*?
*(100/99)*(1/2)*(2/3)*(3/4)*?
*(98/99)
=50*(1/99)=50/998.
解:
原式=(1*2*3)/(2*3*4)=1/4
9.有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:
7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
10.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:
第二组有多少个数?
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
解:
第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
13.妈妈每4天要去一次副食商店,每5天要去一次百货商店。
妈妈平均每星期去这两个商店几次?
(用小数表示)
14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:
7。
15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。
已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个?
16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。
问:
甲、乙两班谁将获胜?
解:
快速行走的路程越长,所用时间越短。
甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
17.轮船从a城到b城需行3天,而从b城到a城需行4天。
从a城放一个无动力的木筏,它漂到b城需多少天?
18.小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的a处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在a处相遇。
小红和小强两人的家相距多少米?
解:
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。
也就是说,小强第二次比第一次少走4分。
由
19.小明和小军分别从甲、乙两地同时出发,相向而行。
若两人按原定
速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。
甲、乙两地相距多少千米?
20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 思维 训练 答案