信道频谱及线性均衡器设计.docx
- 文档编号:24131833
- 上传时间:2023-05-24
- 格式:DOCX
- 页数:20
- 大小:147.14KB
信道频谱及线性均衡器设计.docx
《信道频谱及线性均衡器设计.docx》由会员分享,可在线阅读,更多相关《信道频谱及线性均衡器设计.docx(20页珍藏版)》请在冰豆网上搜索。
信道频谱及线性均衡器设计
基于下图所示的信道模型
f=[0.0000+j*0.0000,0.0485+j*0.0194,0.0573+j*0.0253,0.0786+j*0.0282,0.0874+j*0.0447,0.9222+j*0.0301,0.1427+j*0.0349,0.0835+j*0.0157,0.0621+j*0.0078,0.0359+j*0.0049,0.0214+j*0.0019]
一,研究信道的幅度谱
(单位
),画出频谱图。
二,设计k=1(2k+1=3)及k=10(2k+1=21)的迫零均衡器。
三,画出以上均衡器的频谱图
以及等效信道谱
。
四,采用蒙特卡洛方法,仿真研究无均衡器,采用了3个抽头均衡器和21抽头均衡器情况下系统的符号错误率,系统采用QPSK调制。
一,研究信道的幅度谱
(单位
),画出频谱图。
若要了解离散信号的频谱特征,首先要对离散信号进行傅里叶变换或者是Z变换。
在Z变换中,单位圆上的结果则对应傅里叶变换的结果,即
。
而要得到信道的频谱图,首先要对序列
进行Z变换,得到
。
(1)MATLAB仿真程序:
f=[0.0000+j*0.0000,0.0485+j*0.0194,0.0573+j*0.0253,0.0786+j*0.0282,0.0874+j*0.0447,0.9222+j*0.0301,0.1427+j*0.0349,0.0835+j*0.0157,0.0621+j*0.0078,0.0359+j*0.0049,0.0214+j*0.0019];
f1=0;
forn=1:
11
f1=f(n)*f(n)+f1;
end
b=sqrt(f1);
f=f/b;
w=-3:
2*pi/255:
3;
T=1;
x=0;
form=1:
11
x=x+f(m)*exp(-j*m*w*T);
end
x=10*log10(abs(x));
figure;
plot(w*T,x);
xlabel('\omegaT');
ylabel('10log10|F(e^{j\omega})|(dB)');
title('信道的幅度谱');
gridon
运行的结果如下图:
二,设计k=1(2k+1=3)及k=10(2k+1=21)的迫零均衡器。
(1)根据算法
可以求出所需的抽头系数。
(2)MATLAB仿真程序
F3=[0.9222+j*0.030310.0874+j*0.04470.0786+j*0.0282;
0.1427+j*0.03490.9222+j*0.030310.0874+j*0.0447;
0.0835+j*0.01570.1427+j*0.03490.9222+j*0.03031];
q3=[0;1;0];
c3=F3\q3;
c1=0;
fork=1:
3;
c1=c3(k)*c3(k)+c1;
end
d=sqrt(c1);
c3=c3/d
F21=[0.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000000000000;
0.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000000000000;
0.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000000000000;
0.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000000000;
0.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000000000;
0.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000000000;
00.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000000;
000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000000;
0000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000000;
00000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000;
000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000;
0000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000;
00000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000;
000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000;
0000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000;
00000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000;
000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.0194;
0000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.02521;
00000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.0282;
000000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.0447;
0000000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.0210211];
q21=[0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0];
c21=F21\q21;
c1=0;
fork=1:
21;
c1=c21(k)*c21(k)+c1;
end
d=sqrt(c1);
c21=c21/d
运行的结果如下
c3=
-0.0834-0.0377i
0.9867-0.0071i
-0.1469-0.0266i
c21=
-0.0005-0.0004i
-0.0010-0.0014i
0.0010+0.0000i
0.0030+0.0016i
0.0074+0.0043i
0.0115+0.0097i
-0.0435-0.0120i
-0.0402-0.0122i
-0.0604-0.0129i
-0.0627-0.0323i
0.9837-0.0054i
-0.1321-0.0081i
-0.0569-0.0047i
-0.0427-0.0004i
-0.0009+0.0001i
-0.0131+0.0002i
0.0091+0.0012i
0.0021+0.0002i
0.0008-0.0001i
-0.0006-0.0001i
-0.0000-0.0001i
三、求c=3和c=21时均衡器的频谱图及等效信道谱。
(1)k=1时,求3抽头的系数的幅度谱,MATLAB仿真程序:
F3=[0.9222+j*0.030310.0874+j*0.04470.0786+j*0.0282;
0.1427+j*0.03490.9222+j*0.030310.0874+j*0.0447;
0.0835+j*0.01570.1427+j*0.03490.9222+j*0.03031];
q3=[0;1;0];
c3=F3\q3;
c1=0;
fork=1:
3
c1=c3(k)*conj(c3(k))+c1;
end
d=sqrt(c1);
c3=c3/d;
w=-3:
2*pi/255:
3;
T=1;
x3=0;
fork=1:
3
x3=x3+c3(k)*exp(-j*k*w*T);
end
x3=10*log10(abs(x3));
figure;
plot(w*T,x3);
xlabel('\omegaT');
ylabel('10log10|C(e^{j\omega})|(dB)');
title('3抽头均衡器的幅度谱');
gridon
运行的结果如下图:
(2)k=10时,求21抽头的系数的幅度谱,MATLAB仿真程序:
F21=[0.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000000000000;
0.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000000000000;
0.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000000000000;
0.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000000000;
0.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000000000;
0.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000000000;
00.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000000;
000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000000;
0000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000000;
00000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000000;
000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000000;
0000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000000;
00000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000000;
000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.000000;
0000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.00000;
00000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.01940.0000+j*0.0000;
000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.025210.0485+j*0.0194;
0000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.01570.1427+j*0.021490.9222+j*0.02102110.0874+j*0.04470.0786+j*0.02820.05721+j*0.02521;
00000000000000.0214+j*0.00190.02159+j*0.00490.0621+j*0.00780.08215+j*0.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信道 频谱 线性 均衡器 设计