人教版四年级数学下册总复习重点知识.docx
- 文档编号:24113470
- 上传时间:2023-05-24
- 格式:DOCX
- 页数:14
- 大小:28.59KB
人教版四年级数学下册总复习重点知识.docx
《人教版四年级数学下册总复习重点知识.docx》由会员分享,可在线阅读,更多相关《人教版四年级数学下册总复习重点知识.docx(14页珍藏版)》请在冰豆网上搜索。
人教版四年级数学下册总复习重点知识
名扬家教四年级数学下册总复习知识点
姓名:
第一单元四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里:
如果只有加、减法或者乘、除法,要从左往右按顺序计算;
如果既有加、减法又有乘、除法,要先算乘、除法,后算加、减法。
3、在有括号的算式里:
要先算小括号里面的,再算中括号里面的,最后算括号外面的。
4、有0的运算:
一个数加上0,还得原数;被减数等于减数,差是0;
一个数和0相乘,仍得0;0除以一个非0的数,还得0;0不能作除数。
5、关于“0”的运算
1)“0”不能做除数; 字母表示:
a÷0错误
2)一个数加上0还得原数;字母表示:
a+0=a
3)一个数减去0还得原数; 字母表示:
a-0=a
4)被减数等于减数,差是0;字母表示:
a-a=0
5)一个数和0相乘,仍得0;字母表示:
a×0=0
6)0除以任何非0的数,还得0;字母表示:
0÷a(a≠0)=0
7)0÷0得不到固定的商;5÷0得不到商.
第二单元位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。
(比例尺、角的画法和度量)
注意:
1)比例尺2)正北方向3)角的画法
2、位置间的相对性。
会描述两个物体间的相互位置关系。
(观测点的确定)
3、简单路线图的绘制。
4.地图的三要素:
图例、方向、比例尺。
5.确定方向时:
A、先确定观测点
(1)从那里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B站在观测点来看方向。
例如:
①东偏南25°(标25°的那个角就靠近东)
②西偏北35°(标35°的那个角就靠近西)
6.描述路线和绘路线图时:
只有一条线,所作的线是首尾相连的。
7.常用的八个方位:
东、南、西、北、东南、东北、西南、西北。
第三单元运算定律及简便运算:
1、加法运算定律(2个)
加法交换律:
两个加数交换位置,和不变。
即:
a+b=b+a
加法结合律:
先把前两个数相加,或者先把后两个数相加,和不变。
即:
(a+b)+c=a+(b+c)
2、减法的性质
一个数连续减去几个数等于这个数减去这几个数的和。
即:
a–b–c=a–(b+c)
3、加减法混合运算的性质
在加、减法混合运算时,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
即:
a+b–c=a–c+b
在加、减法混合运算中添括号时,如果添加的括号前面是“+”,那么括号内的数原运算符号不变;如果添加的括号前面是“-”,则括号内的原运算符号要变号。
即:
a+b–c=a+(b–c);a-b+c=a–(b–c)
四、乘、除法的速算与巧算
1、乘法运算定律(3个)
乘法交换律:
两个因数交换位置,积不变。
即:
a×b=b×a
乘法结合律:
先乘前两个数,或者先乘后两个数,积不变。
即:
(a×b)×c=a×(b×c)
乘法分配律:
两个数的和(或差)与一个数相乘,可以先把它们与这个数分别相乘,再把所
得的积相加(或相减)。
即:
(a±b)×c=a×c±b×c
2、除法分配律:
两个数的和(或差)除以一个数,可以用这个数分别去除这两个数,再把所得的商相加(或相减)。
即:
(a±b)÷c=a÷c±b÷c
3、连除的性质
一个数连续除以几个数等于这个数除以这几个数的积。
即:
a÷b÷c=a÷(b×c)
4、乘除法运算的性质
a×b÷c=a÷c×b=b÷c×a=(a×b)÷c=a×(b÷c)
a÷(b÷c)=a÷b×c=a×c÷ba÷b=(a×n)÷(b×n)=(a÷n)÷(b÷n)(n≠0)
5、逆用乘除法分配律
a×c±b×c=(a±b)×c;a÷c±b÷c=(a±b)÷c
乘法分配律的应用:
①类型一:
(a+b)×c 例:
(25+16)×4 (a-b)×c例:
(40-4)×25
=a×c+b×c =25×4+16×4 =a×c-b×c=40×25-4×25
②类型二:
a×c+b×c 例:
19×63+81×63 a×c-b×c例:
123×14-23×14
=(a+b)×c =(19+81)×63 =(a-b)×c=(123-23×14
③类型三:
a×99+a 例:
56×99+56 a×b-a例:
961×101-961
=a×(99+1) =56×(99+1) =a×(b-1)=961×(101-1)
④类型四:
a×99 例:
75×99 a×10287×102
=a×(100-1) =75×(100-1) =a×(100+2)=87×(100+2)
=a×100-a×1 =75×100-75 =a×100+a×2=87×100+87×2
三、简便计算
1.连加的简便计算:
①使用加法结合律(把和是整十、整百、整千、的结合在一起)
②个位:
1与9,2与8,3与7,4与6,5与5,结合。
③十位:
0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。
如:
106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。
如:
106-(26+74)=106-26-74
3.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)
例如:
123+38-23=123-23+38 146-78+54=146+54-78
4.连乘的简便计算:
使用乘法结合律:
把常见的数结合在一起 25与4;125与8;125与80 等
看见25就去找4,看见125就去找8;
5.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。
(可以先乘,也可以先除)
例如:
27×13÷9=27÷9×13
四、连除的性质:
一个数连续除以两个数,等于除以这两个数的积。
a÷b÷c =a÷(b×c)
1、常见乘法计算:
25×4=100125×8=1000
2、加法交换律简算例子:
3、加法结合律简算例子:
50+98+50488+40+60
=50+50+98=488+(40+60)
=100+98=488+100
=198=588
4、乘法交换律简算例子:
5、乘法结合律简算例子:
25×56×499×125×8
=25×4×56=99×(125×8)
=100×56=99×1000
=5600=99000
6、含有加法交换律与结合律的简便计算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律简算例子:
1、分解式2、合并式
25×(40+4)135×12—135×2
=25×40+25×4=135×(12—2)
=1000+100=135×10
=1100=1350
3、特殊14、特殊2
99×256+25645×102
=99×256+256×1=45×(100+2)
=256×(99+1)=45×100+45×2
=256×100=4500+90
=25600=4590
5、特殊36、特殊4
99×2635×8+35×6—4×35
=(100—1)×26=35×(8+6—4)
=100×26—1×26=35×10
=2600—26=350
=2574
一、连续减法简便运算例子:
528—65—35528—89—128528—(150+128)
=528—(65+35)=528—128—89=528—128—150
=528—100=400—89=400—150
=428=311=250
二、连续除法简便运算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
三、其它简便运算例子:
256—58+44250÷8×4
=256+44—58=250×4÷8
=300—58=1000÷8
=242=125
五、有关简算的拓展:
102×38-38×2 125×25×32 125×88 37×96+37×3+37
第四单元小数的意义和性质
1.小数的产生:
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。
整数部分的最低位是个位。
个位和十分位的进率是10。
7、 小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位
千位
百位
十位
个位
·
十分位
百分位
千分位
万分位
…
计数单位
…
万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分之一
…
(1)6.378的计数单位是0.001。
(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),
8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]
8、小数的读法:
先读整数部分(按照原来的读法),再读小数点,再读小数部分。
读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:
先写整数部分(按照原来的写法),再写小数点,再小数部分:
写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:
小数的末尾添上“0”或去掉“0”,小数的大小不变。
注意:
小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。
作用可以化简小数等。
11、小数的大小比较:
(1)先比较整数部分;
(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点的移动
小数点向右移:
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;……
小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的
;
移动两位,小数就缩小100倍,即小数就缩小到原数的
;
移动三位,小数就缩小1000倍,即小数就缩小到原数的
;……
13、生活中常用的单位:
质量:
1吨=1000千克; 1千克=1000克
长度:
1千米=1000米 1分米=10厘米 1厘米=10毫米
1分米=100毫米 1米=10分米=100厘米=1000毫米
面积:
1平方米=100平方分米 1平方分米=100平方厘米
1平方千米=100公顷 1公顷=10000平方米
人民币:
1元=10角 1角=10分 1元=100分
长度单位:
千米————米 ————分米 ———— 厘米
面积单位:
平方千米———公顷———平方米————平方分米———平方厘米
质量单位:
吨————千克————克
单位换算:
(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。
(2)低级单位转化成高级单位=======除以进率,小数点向左移动。
14、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。
如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。
反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。
反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。
改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。
改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。
注意:
带上单位。
然后再根据小数的性质把小数末尾的零去掉即可。
(5)在表示近似数时,小数末尾的“0”不能去掉。
1、(亿>万>千>百>十>个)1亿=10000万1万=10000(个)
2、(元>角>分)1元=10角=100分
3、(吨>千克>克)1吨=1000千克1千克=1000克
4、(千米>米>分米>厘米>毫米)1千米=1000米1米=10分米=100厘米=1000毫米
5、(平方千米>公顷>平方米>平方分米>平方厘米>平方毫米)
1平方千米=100公顷1公顷=10000平方米
1平方千米=1000000平方米
1平方米=100平方分米=10000平方厘米=1000000平方毫米
第五单元三角形
1、三角形的定义:
由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:
三角形高的画法。
3、三角形的特性:
1、物理特性:
稳定性。
如:
自行车的三角架,电线杆上的三角架。
4、边的特性:
任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:
锐角三角形,直角三角形,钝角三角形。
按照边长短来分:
三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。
(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形
14、三角形的内角和等于180度。
四边形的内角和是360°有关度数的计算以及格式。
15、图形的拼组:
两个完全一样的三角形一定能拼成一个平行四边形。
16、用2个相同的三角形可以拼成一个平行四边形。
17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。
一个大的等腰的直角的三角形。
19、密铺:
可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
第六单元小数的加减法
1、计算法则:
相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。
结果是小数的要依据小数的性质进行化简。
2、竖式计算以及验算。
注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。
(简算)
第七单元统计
1、条形统计图优点:
直观地反映数量的多少。
2、折线统计图优点:
既可以反映数量的多少,又能反映数量的增减变化。
3、折线统计图中,变化趋势指:
上升或者下降。
4、折线统计图:
是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。
5、优点:
不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。
第八单元数学广角:
植树问题
(一)植树问题:
1、两端要栽:
间隔数=总长÷间距;总长=间距×间隔数;
棵数=间隔数+1;间隔数=棵数-1
2、两端不栽:
间隔数=总长÷间距;总长=间距×间隔数;
棵数=间隔数-1;间隔数=棵数+1间隔数=总长度÷间隔长度
情况分类:
1、两端都植:
棵数=间隔数+1
2、一端植,一端不植:
棵数=间隔数
3、两端都不植:
棵数=间隔数-1
4、封闭:
棵数=间隔数
(二)锯木问题:
段数=次数+1; 次数=段数-1
总时间=每次时间×次数
(三)方阵问题:
最外层的数目是:
边长×4—4或者是(边长-1)×4
整个方阵的总数目是:
边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形):
总长÷间距=间隔数;棵数=间隔数
(五)棋盘棋子数目:
1.棋盘最外层棋子数:
每边棋子数×边数-边数
2.棋盘总的棋子数:
每行棋子数×每列棋子数
3.方阵最外层人数:
每边人数×4-4
4.多边形上摆花盆:
每边摆的花盆数×边数-边数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 四年级 数学 下册 复习 重点 知识