二次函数与实际问题经典题.docx
- 文档编号:24061372
- 上传时间:2023-05-23
- 格式:DOCX
- 页数:10
- 大小:57.93KB
二次函数与实际问题经典题.docx
《二次函数与实际问题经典题.docx》由会员分享,可在线阅读,更多相关《二次函数与实际问题经典题.docx(10页珍藏版)》请在冰豆网上搜索。
二次函数与实际问题经典题
◆1◆2011本溪――24
我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?
最大利润是多少元?
(利润=售价-成本)
◆2◆2011朝阳
25.(本小题满分12)
为迎接2011年中国国际旅游节,某宾馆将总面积为6000平方米的房屋装修改造成普通客房(每间26平方米)和高级客房(每间36平方米)共100间及其他功能用房若干间,要求客房面积不低于总面积的50%,又不超过总面积的60%.
(1)求最多能改造成普通客房多少间.
(2)在
(1)的情况下,旅游节期间,普通客房以每间每天100元的价格全部租出,高级客房每天租出的间数y(间)与其价格x(元/间)之间的关系如图所示.试问:
该宾馆一天的最高客房收入能达到12000元吗?
若能,求出此时高级客房的价格;若不能,请说明理由.
◆3◆2006辽宁十一市――25
北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查这种水果在北方市场上的销售量
(吨)与每吨的销售价
(万元)之间的函数关系如下图所示:
(1)求出销售量
与每吨销售价
之间的函数关系式;
(2)如果销售利润为
(万元),请写出
与
之间的函数关系式;
(3)当每吨销售价为多少万元时,销售利润最大?
最大利润是多少?
◆4◆2010锦州――24
(10分)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.
(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式.当销售单价为何值时,所获利润最大?
最大利润是多少?
◆5◆2011沈阳――23
一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).
⑴用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.
⑵求今年这种玩具的每件利润y元与x之间的函数关系式.
⑶设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?
最大年销售利润是多少万元?
注:
年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.
◆6◆2011抚顺――24
某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:
x(元/个)
30
50
y(个)
190
150
(1)求y与x之间的函数关系式;
(2)若该商品的销售单价在45元~80元之间浮动,
①销售单价定为多少元时,销售利润最大?
此时销售量为多少?
②商场想要在这段时间内获得4550元的销售利润,销售单价应定为多少元?
◆7◆2010朝阳
某服装厂生产甲、乙两种型号的男装,受资金及规模限制,每天只能生甲、乙两种型号的男装共120套。
已知甲型号男装每套成本为80元,乙型号男装每套成本为100元,每天生产这两种男装的资金不高于10800元,根据市场需求,每天至少生产乙型号男装40套。
设每天生产甲型号男装为x套。
(1)该服装厂每天生产甲型号服装最少多少套,最多多少套?
(2)经市场调查,生产的甲、乙两种型号男装有两种试销方案(假设每天生产的男装都能全部售出)
方案一:
两种型号男装都由本厂门市销售,甲型号120元/套,乙型号160元/套
方案二:
乙型号男装在本厂门市销售,160元/套;甲型号男装运往外地某市服装店销售,售价y(元/套)与销售量x(套)之间的关系如图所示。
综合考虑各种因素,每天需另外固定支出各种费用900元。
(此时,日销售利润=日销售总额-成本-日固定支出)
试问:
为获得最大的日销售利润,该厂应该选用哪种方案销售?
最大的日销售利润是多少?
写出相应的生产方案。
Y(元/件)
160
150
140
0607080X(件)
◆8◆
某灯饰店老板为试销一种成本为每盏50元的壁灯,投资8000元新装修店面。
规定试销时的销售单价每盏不低于60元,又不高于80元,试销中月销售量y(盏)与销售单价x(元)的关系可以近似的看作一次函数(如图)
(1)求Y与x的函数关系式,并写出x的取值范围。
(2)第一个月该店是盈利还是亏损?
求出盈利最大或亏损最小时的销售单价。
(3)在
(2)的前提下,即在第一个月该店盈利最大或亏损最小时,第二个月该店销售单价为多少时,该店两个月获得的总利润为3500元?
Y(盏)
400
300
6070X(元)
◆9◆2012朝阳市25.某商家经销一种绿茶,用于装修门面已投资3000元。
已知绿茶每千克成本50元,在第一个月的试销时间内发现。
销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示
销售单价x(元/kg)
……
70
75
80
85
90
……
销售量w(kg)
……
100
90
80
70
60
……
设该绿茶的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?
◆10◆.(湖北荆门10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投
资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所
示的函数对应关系.
型号
金额
Ⅰ型设备
Ⅱ型设备
投资金额
(万元)
5
2
4
补贴金额
(万元)
2
2.4
3.2
(1)分别求
和
的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的
方案,并求出按此方案能获得的最大补贴金额.
◆11◆(黑龙江模拟)某地引进外资兴办的一家公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
x(十万元)
0
1
2
…
y
1
1.5
1.8
…
(1)求y与x的函数关系式;
(2)如果把利润看作是销售额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;
(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司所获年利润随广告费的增大而增
为倡导节能环保,我市决定把主要路段路灯更换为太阳能路灯,已知太阳能路灯售价为5000元/个,目前两个商家有此产品,甲商家有如下方法促销:
若购买路灯不超过100个按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格就减少10元,但太阳能路灯的售价不得低于3500元/个,乙店一律按原价的80%销售,现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元,如果全部在乙商家购买,则所需金额为y2元
(1)分别求出y1、y2与x之间的函数关系式
(2)若市政府投资140万元,最多能购买多少个太阳能路灯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 实际问题 经典