压实度试验方法.docx
- 文档编号:24048718
- 上传时间:2023-05-23
- 格式:DOCX
- 页数:15
- 大小:26.33KB
压实度试验方法.docx
《压实度试验方法.docx》由会员分享,可在线阅读,更多相关《压实度试验方法.docx(15页珍藏版)》请在冰豆网上搜索。
压实度试验方法
路基压实度
路基压实度【degreeofcompaction】(原:
指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示。
)路基压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。
一、简介
对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所的最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。
因此路基压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。
(选于《路基路面试验检测技术》交通部基本建设质量监督总站组织编写)
路基压实度是填土工程的质量控制指标。
先取压实前的土样送试验室测定其最佳含水量时的干密度,此为试样最大干密度。
再取由压实后的试样测定其实际干密度,用实际干密度除以最大干密度即是土的实际压实度。
用此数与标准规定的压实度比较,即可知道土的压实程度是否达到了质量标准。
路基压实度=试样干密度/最大干密度(100%)
二、传统压实度检验方法
通常采用环刀法,灌砂法和核子密度仪法等。
①环刀法,是一种破坏性的检测方法,适用于不含骨料的细粒土。
优点是设备简单操作方便;缺点是受土质限制,当环刀打入土中时,产生的应力使土松动,壁厚时产生的应力较大,因此干密度有所降低。
②灌砂法,是一种破坏性检测方法,适用于各类土。
优点是测定值精确;缺点是操作较复杂,须经常测定标准砂的密度和锥体重。
③核子密度仪法,是一种非破坏性测定方法。
能快速测定湿密度和含水量,满足现场快速、无破损的要求,并具有操作方便,显示直观的优点,但应与灌砂法进行对比标定后方可使用。
灌砂法
灌砂法是利用均匀颗粒的砂去置换试洞的体积,它是当前最通用的方法,很多工程都把灌砂法列为现场测定密度的主要方法。
该方法可用于测试各种土或路面材料的密度,它的缺点是:
需要携带较多量的砂,而且称量次数较多,因此它的测试速度较慢。
采用此方法时,应符合下列规定:
(1)当集料的最大粒径小于15mm、测定层的厚度不超过150mm时,宜采用Φ100mm的小型灌砂筒测试。
(2)当集料的粒径等于或大于15mm,但不大于40mm,测定层的厚度超过150mm,但不超过200mm时,应用Φ150mm的大型灌砂筒测试。
1.仪具与材料
(1)灌砂筒:
有大小两种,根据需要采用。
储砂筒筒底中心有一个圆孔,下部装一倒置的圆锥形漏斗,漏斗上端开口,直径与储砂筒的圆孔相同,漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接,储砂筒筒底与漏斗之间没有开关。
开关铁板上也有一个相同直径的圆孔。
(2)金属标定罐:
用薄铁板制作的金属罐,上端周围有一罐缘。
(3)基板:
用薄铁板制作的金属方盘,盘的中心有一圆孔。
(4)玻璃板:
边长约5m~600mm的方形板。
(5)试样盘:
小筒挖出的试样可用铝盒存放,大筒挖出的试样可用300mmx500mmx40mm的搪瓷盘存放。
(6)天平或台称:
称量10~15kg,感量不大于1g。
用于含水量测定的天平精度,对细粒土、中粒土、粗粒土宜分别为0.01g、0.1g、1.0g。
(7)含水量测定器具:
如铝盒、烘箱等。
(8)量砂:
粒径0.30~0.60mm及0.25~0.50mm清洁干燥的均匀砂,约2040kg,使用前须洗净、烘干,并放置足够长的时间,使其与空气的湿度达到平衡。
(9)盛砂的容器:
塑料桶等。
(10)其他:
凿子、改锥、铁锤、长把勺、小簸箕、毛刷等。
2.试验方法与步骤
(1)标定筒下部圆锥体内砂的质量
①在灌砂筒筒口高度上,向灌砂筒内装砂至距筒顶15mm左右为止。
称取装入筒内砂的质量m1,准确至1g。
以后每次标定及试验都应该维持装砂高度与质量不变。
②将开关打开,让砂自由流出,并使流出砂的体积与工地所挖试坑内的体积相当(可等于标定罐的容积),然后关上开关,称灌砂筒内剩余砂质量m5,准确至1g。
③不晃动储砂筒的砂,轻轻地将灌砂筒移至玻璃板上,将开关打开,让砂流出,直到筒内砂不再下流时,将开关关上,并细心地取走灌砂筒。
④收集并称量留在板上的砂或称量筒内的砂,准确至1g。
玻璃板上的砂就是填满锥体的砂m2。
⑤重复上述测量三次,取其平均值。
(2)标定量砂的单位质量γ。
①用水确定标定罐的容积V,准确至1mL。
②在储砂筒中装人砂并称重,并将灌砂筒放在标定罐上,将开关打开,让砂流出,在整个流砂过程中,不要碰动灌砂筒,直到砂不再下流时,将开关关闭,取下灌砂筒,称取筒内剩余砂的质量准确至1g。
③计算填满标定罐所需砂的质量。
④重复上述测量三次,取其平均值。
⑤计算量砂的单位质量。
(3)试验步骤
①在试验地点,选一块平坦表面,并将其清扫干净,其面积不得小于基板面积。
②将基板放在平坦表面上。
当表面的粗糙度较大时,则将盛有量砂的灌砂筒放在基板中间的圆孔上,将灌砂筒的开关打开,让砂流入基板的中孔内,直到储砂筒内的砂不再下流时关闭开关。
取下灌砂筒,并称量筒内砂的质量准确至1g。
当需要检测厚度时,应先测量厚度后再进行这一步骤。
③取走基板,并将留在试验地点的量砂收回,重新将表面清扫干净。
④将基板放回清扫干净的表面上(尽量放在原处),沿基板中孔凿洞(洞的直径与灌砂筒一致)。
在凿洞过程中,应注意勿使凿出的材料丢失,并随时将凿出的材料取出装人塑料袋中,不使水分蒸发,也可放在大试样盒内。
试洞的深度应等于测定层厚度,但不得有下层材料混人,最后将洞内的全部凿松材料取出。
对土基或基层,为防止试样盘内材料的水分蒸发,可分几次称取材料的质量。
全部取出材料的总质量为mw,准确至1g。
⑤从挖出的全部材料中取出有代表性的样品,放在铝盒或洁净的搪瓷盘中,测定其含水量(w,以%计)。
样品的数量如下:
用小灌砂筒测定时,对于细粒土,不少于100g;对于各种中粒土,不少于500g。
用大灌砂筒测定时,对于细粒土,不少于200g;对于各种中粒土,不少于1000g对于粗粒土或水泥、石灰、粉煤灰等元机结合料稳定材料,宜将取出的全部材料烘干,且不少于2000g,称其质量md,准确至1g。
当为沥青表面处治或沥青贯人结构类材料时,则省去测定含水量步骤。
6.将基板安放在试坑上,将灌砂筒安放在基板中间(储砂筒内放满砂质量m1),使灌砂筒的下口对准基板的中孔及试洞,打开灌砂筒的开关,让砂流入试坑内。
在此期间,应注意勿碰动灌砂筒,直到储砂筒内的砂不再下流时,关闭开关。
小心取走灌砂筒,并称量筒内剩余砂的质量m4,准确到1g。
7.如清扫干净的平坦表面的粗糙度不大,也可省去上述②和③的操作。
在试洞挖好后,将灌砂筒直接对准放在试坑上,中间不需要放基板。
打开筒的开关,让砂流入试坑内。
在此期间,应注意勿碰动灌砂筒。
直到储砂筒内的砂不再下流时,关闭开关,小心取走灌砂筒,并称量剩余砂的质量m’4,准确至1g。
8.仔细取出试筒内的量砂,以备下次试验时再用,若量砂的湿度已发生变化或量砂中混有杂质,则应该重新烘干、过筛,并放置一段时间,使其与空气的温度达到平衡后再用。
3.计算
(1)计算填满试坑所用的砂的质量mb。
(2)计算试坑材料的湿密度ρw。
(3)计算试坑材料的干密度ρd。
(4)水泥、石灰粉、煤灰等无机结合料稳定土,计算干密度ρd。
当试坑材料组成与击实试验的材料有较大差异时,可以试坑材料作标准击实,求取实际的最大子密度。
4.试验中应注意的问题
灌砂法是施工过程中最常用的试验方法之一。
此方法表面上看起来较为简单,但实际操作时常常不好掌握,并会引起较大误差;又因为它是测定压实度的依据:
故经常是质量检测监督部门与施工单位之间发生矛盾或纠纷的环节,因此应严格遵循试验的每个细节,以提高试验精度。
为使试验做得准确,应注意以下几个环节:
(1)量砂要规则。
量砂如果重复使用,一定要注意晾干,处理一致,否则影响量砂的松方密度。
(2)每换一次量砂,都必须测定松方密度,漏斗中砂的数量也应该每次重做。
因此量砂宜事先准备较多数量。
切勿到试验时临时找砂,又不作试验;仅使用以前的数据。
(3)地表面处理要平整,只要表面凸出一点(即使1mm),使整个表面高出一薄层,其体积也算到试坑中去了,会影响试验结果。
因此本方法一般宜采用放上基板先测定一次粗糙表面消耗的量砂,按式(6-7)计算填坑的砂量,只有在非常光滑的情况下方可省去此操作步骤。
(4)在挖坑时试坑周壁应笔直,避免出现上大下小或上小下大的情形:
这样就会使检测密度偏大或偏小。
(5)灌砂时检测厚度应为整个碾压层厚,不能只取上部或者取到下一个碾压层中。
灌沙法的检测步骤
首先要在试验地点选一块平坦表面,其面积不得小于基板面积,并将其清扫干净。
将基板放在此平坦表面上,沿基板中孔凿洞,洞的直径100毫米,在凿洞过程中应注意不使凿出的试样丢失,并随时将凿松的材料取出,放在已知质量的塑料袋内,密封。
试洞的深度应等于碾压层厚度。
凿洞毕,称此袋中全部试样质量,准确至1克。
减去已知塑料袋的质量后即为试样的总质量。
然后从挖出的全部试样中取有代表性的样品,放入铝盒,用酒精燃烧法测其含水量。
最后将灌砂筒直接安放在挖好的试洞上,这时灌砂筒内应放满砂,使灌砂筒的下口对准试洞。
打开灌砂筒开关,让砂流入试洞内。
直到灌砂筒内的砂不再下流时,关闭开关,取走灌砂筒,称量筒内剩余砂的质量,准确至1克。
试洞内砂的质量=砂至满筒时的质量-灌砂完成后筒内剩余砂的质量-锥体的质量。
挖出土的总质量除以试洞内砂的质量再乘以标准砂的密度可计算路基土的湿密度。
干密度就等于湿密度/(1+0.01*含水量)
压实度就等于土的干密度/土的最大干密度*100%
在路基施工过程中,为控制好路基压实质量,提高现场压实机械的工作效率,需要重点做好四方面工作:
1是通过试验准确确定不同种类填土的最大干密度和最佳含水量。
2是现场控制填土的含水量。
实际施工中,填土的含水量是一个影响压实效果的关键指标,路基施工中当含水量过大时应翻松晾晒或掺灰处理,降低含水量;当含水量过低时,应翻松并洒水闷料,以达到较佳的含水量。
3是分层填筑、分层碾压。
施工前,要先确定填土分层的压实厚度。
最大压实厚度一般不超过20厘米。
4是加强现场检测控制。
填筑路基时,每层碾压完成后应及时对压实度、平整度、中线高程、路基宽度等指标进行质量检测,各项指标符合要求后方能允许填筑上一层填土。
三、核子密度湿度仪法
该法是利用放射性元素(通常是 射线和中子射线)测量土或路面材料的密度和含水量。
这类仪器的特点是测量速度快,需要人员少。
该类方法适用于测量各种土或路面材料的密度和含水量,有些进口仪器可贮存打印测试结果。
它的缺点是,放射性物质对人体有害,另外需要打洞的仪器,在打洞过程中使洞壁附近的结构遭到破坏,影响测定的准确性,对于核子密度湿度仪法,可作施工控制使用,但需与常规方法比较,以验证其可靠性。
1.仪具与材料
(1)核子密度湿度仪:
符合国家规定的关于健康保护和安全使用标准,密度的测定范围为1.12~2.73g/cm3,测定误差不大于±0.03,含水率测量范围为0~0.64,测定误差不大于±0.015g/cm3。
它主要包括下列部件:
① γ射线源:
双层密封的同位素放射源,如铯一137、钴-60或镭-226等。
②中子源:
如镅(241)一铍等。
③探测器:
γ射线探测器或中子探测器等。
④读数显示设备:
如液晶显示器。
脉冲计数器、数率表或直接读数表。
⑤标准板:
提供检验仪器操作和散射计数参考标准用。
⑤安全防护设备:
符合国家规定要求的设备。
6.刮平板、钻杆、接线等。
(2)细砂:
0.15~0.3mm。
(3)天平或台称。
(4)其他:
毛刷等。
2.试验方法与步骤
本方法用于测定沥青混合料面层的压实密度时,在表面用散射法测定,所测定沥青面层的层厚应不大于根据仪器性能决定的最大厚度。
用于测定土基或基层材料的压实密度及含水量时打洞后用直接透射法测定,测定层的厚度不宜大于20cm.。
1)准备工作
(1)每天使用前按下列步骤用标准板测定仪器的标准值:
①接通电源,按照仪器使用说明书建议的预热时间,预热测定仪。
②在测定前,应检查仪器性能是否正常,在标准板上取34个读数的平均值建立原始标准值,并与使用说明书提供的标准值校对,如标准读数超过使用说明书规定的界限时,应重复此标准的测量,若第二次标准计数仍超出规定的界限时,需视作故障并进行仪器检查。
(2)在进行沥青混合料压实层密度测定前,应用核子法对钻孔取样的试件进行标定;测定其他材料密度时,宜与挖坑灌砂法的结果进行标定。
标定的步骤如下:
①选择压实的路表面,按要求的测定步骤用核子仪测定密度,记录读数;
②在测定的同一位置用钻机钻孔法或挖坑灌砂法取样,量测厚度,按规定的标准方法测定材料的密度;
③对同一种路面厚度及材料类型,在使用前至少测定15处,求取两种不同方法测定的密度的相关关系,其相关系数应不小于0.9。
(3)测试位置的选择
①按照随机取样的方法确定测试位置,但与距路面边缘或其他物体的最小距离不得小于30cm。
核子仪距其他射线源不得少于10m。
②当用散射法测定时,应用细砂填平测试位置路表结构凹凸不平的空隙,使路表面平整,能与仪器紧密接触。
③当使用直接透射法测定时,应在表面上用钻杆打孔,孔深略深于要求测定的深度,孔应竖直圆滑并稍大于射线源探头。
(4)按照规定的时间,预热仪器。
2)测定步骤
(1)如用散射法测定时,应将核子仪平稳地置于测试位置上。
(2)如用直接透射法测定时,将放射源棒放下插入已预先打好的孔内。
(3)打开仪器,测试员退出仪器2m以外,按照选定的测定时间进行测量,到达测定时间后,读取显示的各项数值,并迅速关机。
各种型号的仪器具体操作步骤略有不同,可按照仪器使用说明书进行。
3.使用安全注意事项
(1)仪器工作时,所有人员均应退到距仪器2m以外的地方。
(2)仪器不使用时,应将手柄置于安全位置,仪器应装人专用的仪器箱内,放置在符合核幅射安全规定的地方。
(3)仪器应由经有关部门审查合格的专人保管,专人使用。
对从事仪器保管及使用的人员,应遵照有关核幅射检测的规定,不符合核防护规定的人员,不宜从事此项工作。
传统检测方法存在的问题
传统路基压实度的检测方法,无论是环刀法、灌砂法、还是核子测量法均停留在结果检测,与此同时环刀法、灌砂法还属于有损检测不但操作麻烦费时费工,同时还耗费了大量的财物等诸多缺陷。
公路的路基压实质量主要由压实系数控制,然而对于高等级铁路和公路,例如铁路客运专线的路基压实质量主要由地基反力系数K30、动态变形模量Evd、变形模量Ev2、孔隙率n、压实系数K控制。
在路基压实过程中,为了检测上述指标主要依靠现场“抽样”试验方法。
这样的路基质量检验方法在路基质量控制和施工经济性方面寄生了以下不足之处:
1)用个别点的检测结果代表全断面的质量,因此不能反映路基全断面压实质量。
2)质量控制仅是结果控制,而不是过程控制。
3)无法控制超压现象。
4)当填料存在不均匀性时,抽样点很难具有代表性。
综上所述实时、无损伤路基检测仪成为路基压实度检测的迫切需求,压实度过程检测的研究也成为压路机行业的一大发展方向。
四、智能检测仪
基压实度检测仪ICCC,是由四川瞭望工业自动化控制技术有限公司与西南交通大学共同研发,在精度与稳定性较同类产品都有了本质的提升,该仪器不但能对压实度、振动频率、压路机运行速度及压路区域图做出准确测定,并且以cmv输出(cmv是国际对压实度评定标准的一种参数,通过系数拟合,可以方便显示为用户习惯的任何一种评定参数)同时可以作为压路机自动化,智能化终端平台,为“单机智能化,定点控制,智能机群化”等压路机发展方向提供了可行路径!
同时能通过扩展得到用户需求的"地面温度","滚筒斜度"及各种复杂环境下数据支持。
1、安装在作业压路机上,实时显示压路效果,并将效果图转化为直观的压路区域图,以cmv输出真实有效的反应路基压实度质量;
2、用于压路效果的验收及质量检测。
能够输出打印检测路段的压实度效果图,形象直观的为压实度检测提供数据的支持。
五、相对于传统的优点
1、实现了过程无损伤检测,更快速的反应问题,大大提高了施工进程和效率,避免了结果检测带来的人力物力的损失;
2、ICCC的储存传输功能为施工进程提供了连续准确的检测数据,为路基压实质量提供了强有力的保障;
3、连续、实时、准确的反应了路基断面压实真实质量,避免了以点带面的检测误差;
4、简单直观的反应压实质量,ICCC检测仪采用彩色平面图直观并实时的显示路基压实区域内的压实质量。
5、操纵简单,利用压实过程中的实时地基反力系数,压路机操作人员可进行路基压压实的过程控制,加强了路基压实质量控制的针对性;
6、中文显示、体积小、重量轻、支持压路机专属配件,安装简易;
7、设置压路机专属电源接口,实现了可持续不间断的检测。
六、技术参数
精度误差:
2%(与灌砂法为参照点)
显示:
800×600触控LED液晶屏,全中文显示;
通信接口:
标准网络接口、两个USB,支持U盘数据导出;
A/D:
24bit,
动态范围:
整个系统达100dB;
直流精度:
优于0.01%F.S;
存储容量:
标配4GB固态存储(扩展容量可选配);
供电方式:
支持压路机12/24VDC供电;
工作温度:
-10℃~60℃;
最大尺寸:
218×131×65mm
重量:
1.5公斤
防护等级:
IP52(防大颗粒灰尘进入,防水淋溅)
七、灌砂法检测路基压实度
路基工程压实度(密度)的检测方法有环刀法、电动取土器法、蜡封法、灌水法、灌砂法及核子密度仪测定法。
在公路工程实际施工中常用的有灌砂法及核子密度仪测定法和环刀法。
而核子密度仪检测方法的应用具有相当的局限性,同时核子密度仪可能对人体造成的辐射伤害更加剧了这种局限性。
灌砂法则因其数值的准确性、操作过程的可控性和结果的可代表性而得到建设各方面的广泛认可,成为目前公路建设中应用最广泛的压实度检测方法。
灌砂法基本原理是用粒径0.3~0.6mm或0.25~0.5mm清洁干燥干净的均匀砂,从一定高度自由下落到试洞内,按其单位重不变的原理来测量试洞的容积,并根据集料的含水量来推算出试样的实测干密度。
因此,存在诸多影响检测结果的因素,本人根据广西公路建设的施工管理实践中总结的经验,提出以下几点影响灌砂法检测压实度的因素进行分析,希望在今后公路路基压实度检测中尽量避免。
1室内量砂标定对灌砂法的影响
1.1标定罐深度对量砂密度的影响
通过现场试验结果发现标定罐深度每减2cm砂密度大约降低1%(取凤覃二级公路第9合同段试验室标定数据),与《公路土工试验规程》(JTGE40-2007)中标定罐每减2.5cm砂的密度约降低1%基本相符。
可见标定罐深度不同对砂密度影响较大。
因此,现场试洞深度应尽量与室内标定罐深度一致。
1.2贮砂筒中砂面高度及砂的总重对量砂密度的影响
《公路土工试验规程》对贮砂筒内砂的高度和质量做了明确规定。
筒内砂的高度与筒顶距离不超过15mm,原因是不同砂面高度的砂,其下落速度不同,因而灌进标定罐内砂的密实程度也不同,这就直接影响了量砂的密度。
因为标定时,只要砂总重相同,即砂的自重一样,则其下落速度也能保持一致,从而提高量砂使用的准确性。
实践证明,现场测量时,贮砂筒中砂面高度保持一致(自然重量也将一致),则大大提高检测数据的准确性。
1.3砂的颗粒级配组成对量砂密度的影响
《公路土工试验规程》对砂的颗粒组成对试验的重现性有影响进行了说明,不同颗粒粒径组成的砂,其级配不同,密度也明显不同,根据不同粒径的砂标定漏斗的体积和砂的密度时的重现性表可知,使用粒径0.3~0.6mm砂的重现性最好,则每次检测使用时量砂必需采用标准砂0.3~0.6mm),且要保持砂的清洁及干燥。
1.4砂密度大小对试验结果影响
灌砂法基本原理是用标准砂来置换试洞中的集料,利用试洞中的砂质量换算试洞体积。
砂密度偏大会造成试洞换算体积偏小,压实度偏大;砂密度偏小会造成试洞换算体积偏大,压实度偏小。
1.5锥砂质量大小对试验结果的影响锥砂质量大小对现场试验精度有直接影响。
锥砂质量偏大,造成试洞中砂质量偏小,试洞换算体积相应偏小,压实度值偏大。
锥砂质量偏小,造成试洞中砂质量偏大,试洞换算体积相应偏大,压实度相应偏小。
故标定锥砂重必须在现场多次重复标定,取平均值,确保试验准确性。
2现场作业对灌砂法检测的影响
2.1选点及检测频率
路基压实质量是否满足要求与单个测点压实度及整个路段总体压实度评结果有关。
因此压实度检测选点是否得当,直接影响到压实度的检测结果。
进行压实度检测时,选点应得当,随机取点,检测频率要满足规范要求。
这样,检测结果才能较客观地反映工程质量的实际情况。
2.2测点位置的选择
检测点的位置很重要。
由于工程结构的特殊性,一般而言,由于设备行车轨迹及机手边缘情结,路基中间部位压实度相对较高,而两侧接近路缘处往往压实度不够,而压实度则普遍较低。
千里之堤溃于蚁穴,任何一个薄弱点都可能造成整个工程质量隐患,而压实度检测也应全面检测,对检测出的薄弱点应及时报告现场施工人员,采取补救措施。
2.3试洞深度对检测结果的影响
按照《公路路基路面现场测试规程》要求,试洞的深度应该等于测定层的厚度,但不得有下层材料混入。
由于现场操作时,挖洞这项工作往往由民工完成,其挖洞深度经常达不到要求。
压路机在碾压过程中其应力分布呈倒三角形,所以就每压实层而言,越向下的部位其压实度越小。
因而,洞的深度不够,将导致测得的压实度值偏大。
不过,公路施工均采用透层检测,也即全面消除倒三角形的影响。
2.4试洞形状对检测结果的影响
试洞深度应尽量等于标定时深度,试洞的形状应该是空的圆柱体,坑壁笔直,上下口直径相等。
但实际掘坑时由于检测人员责任心不强,往往会将坑成上大下小的锅底状或上小下大的形状,尤其是在接近试洞坑底将导致较松散部位的土取出得相对较少,导致测得的压实度偏大,反之上小下大的形状将导致压实度偏小。
2.5灌砂时间对检测结果的影响
因为砂子的流动是从中心开始而后才向边缘扩展的,而我们又无法直接观察到中心部位砂子的流动情况。
正确的做法是边缘处标准砂不再流动后还需要等十几秒钟再停止灌砂。
如果提前结束灌砂,势必导致灌入的标准砂质量偏少,从而导致测得的压实度值偏大。
2.6现场含水量对检测结果的影响
现场含水量检测常用酒精法,但要注意酒精是否淹没集料出现自由液面、燃烧次数、所用酒精纯度。
在取料做含水量时,应取试洞内有代表性的土样及时检测含水量,若选取了较干燥或较湿的部分或拖延了时间选取势必导致含水量偏差,从而影响压实度值。
2.7要尽量使检测表面光滑平整
现场测试完后,要检查灌砂筒底板、基板与地面之间是否有砂子漏出,如果有要将其单独清出,称其质量,计算时应扣除这部分质量。
若忽略则会影响压实度的真实性。
2.8现场施工干扰对检测结果的影响
灌砂法检测现场任何产生振动的干扰均会增加试洞内灌砂质量,造成换算试洞体积增大,压实度值偏小。
因此,检测现场应严防施工干扰,确保检测结果的准确性。
2.9现场检测后回收标准砂注意事项
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压实度 试验 方法