初中几何变换翻折.docx
- 文档编号:23812984
- 上传时间:2023-05-21
- 格式:DOCX
- 页数:12
- 大小:217.14KB
初中几何变换翻折.docx
《初中几何变换翻折.docx》由会员分享,可在线阅读,更多相关《初中几何变换翻折.docx(12页珍藏版)》请在冰豆网上搜索。
初中几何变换翻折
初中几何变换——翻折
第4题第5题第6题
6、如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且
,则CE的长是。
7、如图1,在矩形纸片ABCD中,AB=8
,AD=10,点E是CD的中点.将这张纸片依次折叠两次:
第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落在B′处,折痕为HG,连接HE,则tan∠EHG=.
图2图3
8、如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.
(1)求证:
△ABG≌△AFG;
(2)求BG的长.
类型二:
轴对称应用
1、菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.
2、如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.
3、如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值为。
4、如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是 .
类型三:
动点与轴对称
1、如图,在矩形ABCD中,AB=
,点E是边BC的一个三等分点(CE 与B在一条直线上时,∆EFG的周长是。 第1题第2题 2、如图,在矩形ABCD中,AB=5,AD=13,E、F分别是AB、AD边上的动点,将∆ABE向下翻折,点A落在BC边上A 处,则A B的最小值是。 3、如图,正方形ABCD的边长为6,EF是正方形ABCD的一条对称轴,G、H分别在AB、CD上,将图形沿GH对折后,点C落在E处,求tan =。 第3题第4题 4、如图,在Rt∆ABC中AC=4,BC=3,D是AB边上一动点,点E与点A关于直线CD对称,当DE//BC时,AD=。 5、如图,在Rt∆ABC中,AB=4,BC=3,D是AB边上一动点,DE//BC,A、A 关于DE对称,当∆A EC为直角三角形是AD=。 类型四: 综合应用 1、如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点, (1)求证: 四边形AECF为平行四边形; (2)若△AEP是等边三角形,连结BP,求证: △APB≌△EPC; (3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积. 2、如图 (1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN. (1)求证: △AND≌△CBM. (2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗? 请说明理由? (3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图 (2)所示,若PQ=CQ,PQ∥MN。 且AB=4,BC=3,求PC的长度. 3、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t. (Ⅰ)如图①,当∠BOP=300时,求点P的坐标; (Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m; (Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可). 4、如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合. (1)求证: △ABG≌△C′DG; (2)求tan∠ABG的值; (3)求EF的长. 5、问题提出 (1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形. 问题探究 (2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小? 若存在,求出它周长的最小值;若不存在,请说明理由. 问题解决 (3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件? 若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由. 三、课后作业 1、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 . 2、如图1,在锐角三角形ABC中,AB=4 ∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为 . 第1题第2题第3题 3、如图,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是______. 4、如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=_____. 5、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是__________. 6、如图,Rt△ABC中,∠C=90°,AB=5,AC=3,在边AB上取一点D,作DE⊥AB交BC于点E,先将△BDE沿DE折叠,使点B落在线段DA上,对应点记为B1;BD的中点F的对应点记为F1.若△EFB∽△AF1E,则B1D= 7、如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C. 探究一: 猜想: 四边形ABCD是何种特殊的四边形? 请证明自己的猜想. 探究二: 连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段 MN2、ND2、DH2之间的数量关系,并说明理由. 探究三: 若EG=4,GF=6,BM=3 ,你能求出AG、MN的长吗? 8、数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,AC= AB, 求证: ∠B=30°,请你完成证明过程. (2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用 (1)中的结论求∠ADG的度数和AG的长. (3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 几何 变换