金融经济学完整版复习框架.docx
- 文档编号:23779668
- 上传时间:2023-05-20
- 格式:DOCX
- 页数:25
- 大小:628.54KB
金融经济学完整版复习框架.docx
《金融经济学完整版复习框架.docx》由会员分享,可在线阅读,更多相关《金融经济学完整版复习框架.docx(25页珍藏版)》请在冰豆网上搜索。
金融经济学完整版复习框架
总共内容~引言~不确定条件下选择~投资组合理论~AD框架~套利定价理论
一.引言
1.什么是金融经济学:
(ppt1-6
金融经济学旨在用经济学一般原理和方法来分析金融问题。
它主要侧重于提出金融所涉及基本经济问题、建立对这些问题进行分析理论框架、基本概念和一般原理以及在此框架下应用相关原理解决各个基本问题所建立简单理论模型。
这些框架、概念和原理包括:
时间和风险、资源配置优化、风险禀性和测度、资产评估等,是金融各具体领域研究基础,从资产定价、投资、风险管理、国际金融到公司财务、公司治理、金融机构、金融创新以及金融监管和公共财物等。
2.新古典金融经济学基本框架(ppt1-17
(1经济环境:
是指经济参与者所面临外部环境
(2经济参与者:
是指参与经济活动各个群体或个人
(3金融市场:
是指金融资产交易场所,我们主要讨论证券市场
3.描述经济环境两个关键因素(ppt1-18
(1时间:
简单考虑为期初,期末问题。
记为t期初为0,期末为1.
(2风险。
风险:
风险是指不确定性,即未来结果不确定。
描述方式也包括两个方面:
状态收益
状态:
基本状态——ω——基本事件
E状态空间——Ω——样本空间
E发生概率——P——概率测度
理解什么是状态树:
(书8LUCAS-TREE
期初禀赋**基本事件**即状态**概率**期末禀赋**
4.经济参与者(ppt1-23
参与者类型:
◇个体—个人或家庭◇机构—公司、企业或政府。
两者抽象为自利经纪人。
描述角度:
◇参与者经济资源◇参与者经济需求
经济资源:
◇实物商品/资本品◇信息◇生产技术(实物商品/资本品为重点
信息:
分为公共信息,私有信息。
参与者之间信息不对称是经济学中许多问题根源,比如:
逆向选择,道德风险。
5.禀赋:
(书9
参与者初始占有资源——与生俱来商品或资本品,可以用来消费或生产。
通常假设整个经济系统中只有一个易腐商品。
并且不包含上期投资收益。
禀赋表示(书9
参与者k,k=1,...,K。
0期,1期,Ω个状态。
我们可以吧每一个参与者禀赋看成是(1+Ω维实空间中一个元素。
进一步假设,禀赋非负。
使用下面记号:
a≥0,如果对于所有i有ai≥0。
a>0,如果对于所有i有ai≥0,且对至少一个i有ai>0
A>>0,如果对于所有i有ai>0
因此**等价于e≥0;
6.参与者经济需求(ppt1-27
(1消费与投资
经济人终极目标是消费,但其在每一期决策有两个方面——本期消费和未来消费,从而必须作出消费和投资决策
(2偏好与效用
面对未来不确定性,经济人选择标准问题——我们用偏好和效用来描述——期望效用理论
7.消费集(书12
将参与者可能消费选择称为一个消费计划。
消费计划一个特定实现值,叫做一个消费路径。
所有可能消费计划集合叫做消费集。
注意:
如果经济系统里只有一个人,则可行消费无法与人交换,商品易腐。
关于凸函数和凹函数。
笑脸是凸函数。
苦脸是凹函数。
假设1(书13消费集**是**中一个闭凸子集。
8.偏好(书13
参与者经济需求是由他不同消费计划偏好来描述。
这里有3个定理:
(1完备性定理:
对于任意两个消费计划a,b。
要么a优于b,要么b优于a;或者两个都成立也就是说a,b是无差异。
换一句话说就是任何选择都可以比较好坏。
(2传递性公理:
如果a优于b,并且b优于c。
则可以推出a优于c。
9.证券市场(ppt1-30
经济人通过金融市场对其配置从而满足其经济需求
证券及其支付:
在简单框架下金融市场由一组证券构成。
一只证券是一份金融要求权,它在期末将带来支付,支付数量依赖于当时状态。
证券支付数学表示——简单情形下用向量或支付树表示(书18
市场结构:
当市场上只有有限个证券(N个和有限种状态(Ω个时,可以简单地以支付矩阵表示市场结构(书20
证券组合——投资组合:
持有量用θ表示持有比率用ω表示
10.市场化(书21
市场化:
如果任何一个支付方式都可以通过金融市场交易,构造适当投资组合而得到,则称它为市场化。
所有市场化支付集合为M。
有**
一般来说,M是支付空间**一个自己。
实际上M是**一个N维子空间。
11.市场摩擦(书22
除交易过程以外,还有其他因素与交易有关,如:
市场参与成本,交易成本,参与者交易头寸限制,交易本身对价格影响,以及税收所有这些因素一般都称为市场摩擦。
12.无摩擦市场(ppt1-36
满足下列条件称为无摩擦市场:
(1所有参与者可以无成本参与证券市场
(2无交易成本、无税收
(3无头寸限制
(4个体参与者交易不会影响证券价格
13.基本经济模型(ppt1-37
一个完整经济模型包括如下几个方面:
时间t与状态Ω;概率测度P。
同时商品时不可存储。
经济参与者K
参与者禀赋e
参与者偏好。
定义在消费集上,并且满足公理1,2,3偏好
市场结构与特点:
此处为无摩擦证券市场,N个证券S个状态。
[
14.证券市场经济(书23
如果所有参与者1期禀赋都可以表示为其初始证券组合支付,则我们称之为:
证券市场经济。
15.均衡含义
如果价格使得对证券需求恰好等于供给,则市场达到均衡。
(ppt1-38
此时,参与者选择了他们最优持有量,并且市场出清[
第二讲:
不确定条件选择理论
1.公理化体系(ppt2-10,2-18
(1完备性定理:
对于任意两个消费计划a,b。
要么a优于b,要么b优于a;或者两个都成立也就是说a,b是无差异。
换一句话说就是任何选择都可以比较好坏。
(2传递性公理:
如果a优于b,并且b优于c。
则可以推出a优于c。
(3独立性公理:
假设消费计划c和c'相对于某一状态有相同消费路径x。
并且c优于c',那么,如果我们把
量化公理:
(4可量化公理
(5
排序公理
2.期望效用定理(ppt2-21
3.期望效用函数(书89
期望效用函数可以表示成不同消费路径效用期望值。
**
附加条件:
(书91
(1状态独立:
也就是说两个状态效用是相同。
状态独立效用函数如**
(2时间可加性:
假设**=0也就是说某一期消费编辑效用不依赖与另一期消费水平.
也就是说,从一个消费路径得到效用等于各期消费得到效用之和。
特别我们假设**成立。
假设:
**
这种形式效用函数也称做是时间可加或时间分离。
因此我们可以把参与者期望用效用函数写成:
**
有时,为了方便和简化,我们进一步假设*就是*乘以一个正系数
**
系数ρ就叫做时间偏好系数。
如果ρ=1,则参与者不关心消费时间性。
如果ρ小于1,那么对于相同水平消费,参与者希望越早消费越好,即这样参与者在时间上缺乏耐心。
由于这种情况下,推迟一期等量消费效用就降低1-ρ倍。
因此ρ也称为时间折现系数。
在这种情况下,期望效用就变成了~
**
显然这样效用函数把影响偏好3个因素完全分开了~
每一消费路径发生概率。
消费时间性。
以及消费得到效用本身。
4.风险投资(ppt2-38
当一个不确定支付期望等于0时,称这个不确定支付为一个公平赌博。
(书100风险厌恶有多种定义方法,这里利用效用函数定义—给定财富水平和效用函数,定义风险厌恶(ppt2-39
定义:
如果投资者不喜欢任何零均值(即公平博弈彩票,则称其为风险厌恶者。
(ppt2-39风险厌恶与凸凹性有关,如果效用函数为凹则风险厌恶;反之凸效用函数为风险喜好;直
线为风险中性。
(ppt2-41
定理7.3当且仅当u是严格凹函数时,参与者是严格风险厌恶。
(书101
5.风险厌恶度量
(1绝对风险厌恶系数(书102
风险厌恶参与者偏好于确定性支付而非不确定性支付。
这种偏好强度可以用风险溢价来衡量。
定义7.4一个参与者参与一个公平赌博所要求风险溢价π,定义为
**
风险溢价是参与者为了消除风险而愿意放弃财富值。
带上它前面负号,也称为风险赌博确定性等值
风险厌恶度量:
Arrow-Pratt度量(ppt2-50
记为A(w,也就是ARA。
因为A(w是余每单位绝对风险风险溢价相联系,因而它也被称为绝对风险厌恶。
它不仅依赖于效用函数,也依赖于财富水平w。
通常我们把绝对风险厌恶倒数称作风险容忍系数。
T(w=1/
A(w,,
当ARA≥0,说明投资者是风险厌恶型;
当ARA=0,说明投资者是风险中性型;
当ARA≤0,说明投资者是风险爱好型;
ARA值越大者,表明厌恶风险程度越高。
(2相对风险厌恶系数
即上图中RRA,记为R(w,如果参与者面临风险是与他财富成比例,相应风险溢价作为财富水平一部分,是与他相对风险厌恶以及风险相对于财富大小成正比。
6.典型效用函数(ppt2-57
典型效用函数CARA-常数绝对风险厌恶,也可以叫做负指数效用函数。
对于CARA来说,A(w=a,R(w=aw
幂指数效用函数:
**
A(w=γ/w,R(w=γ;幂指数效用函数绝对风险厌恶随着财富增加而递减,但是相对风险厌恶是常数。
因此把它称作具有常数相对风险厌恶CRRA偏好。
很明显,幂指数效用函数风险容忍对财富是线性。
对数效用函数**
A(w=1/w,R(w=1;
对数效用函数可以看成是当γ->1时幂指数效用函数极限。
因此它也属于CRRA类。
双曲线绝对风险厌恶HARA效用函数。
这类效用函数直接由他们风险厌恶度量定义。
A(w=1/(d+w/γ,γ≥-1
或者T(w=1/A(w=d+w/γ.
即线性风险容忍。
三.资本资产定价
1.可行集-有效集(ppt3-10
2.分离定理(ppt3-12
分离定理:
投资者对风险资产投资模式与个人偏好无关,即组合选择与偏好分离。
含义:
对任何一个理性投资者,尽管他或她最终投资组合选择不相同,但对风险资产选择是相同:
每个投资者以无风险利率借或贷,然后把所筹集到或所剩下资金按相同比例投资到不同风险资产上。
这一相同比例由切点T表示投资组合来决定。
3.投资组合(ppt3-15
投资组合(portfolio是指投资者将资金在不同资产上投资时分配方式
4.全市场组合(ppt3-16
全市场组合(MarketPortfolio是指由市场确定组合,它包含了市场上流通所有证券,
其中每一个证券份额等于该证券总市场价值除以所有证券市场价值之总和。
理论上:
市场上流通证券包括普通股票、长期债券和货币市场工具
这里强调“所有证券”是指我们在进行投资组合选择时可供选择所有投资机会
本书中我们一般地是以整个股票市场再加上1个理想债券为投资对象,即我们通常假设市场上存在N个风险资产和一个无风险资产。
5.市场均衡(ppt3-18
对于市场上每一个证券某一个价格,投资者对这些证券都有一定需求和供给。
当总供给等于总需求时,市场出清(MarketClear,此时我们称证券市场达到了均衡状态。
证券市场达到均衡状态时特性:
(1均衡价格使得每种证券需求与供给相等;
(2切点投资组合包含所有证券,且持有份额为正数;
(3均衡条件下,无风险利率使资本市场上资金借贷(实际是无风险资产买卖相等6.资本市场线(CapitalMarketLine,CML(ppt3-21
资本市场线描述是均衡资本市场上,任何一个有效投资组合预期收益与其风险之间关系。
当市场达到均衡时,全市场组合等于切点组合,它代表了所有投资者对风险资产投资方式。
所有投资者在进行最优投资选择时都是在无风险资产(Rf和全市场组合(m之间进行资金分配。
无风险资产与全市场组合连线就是有效集,这条直线形有效集称为资本市场线。
资本市场线描述是当市场处于均衡状态时,有效证券组合预期收益和风险之间呈线性关
系—风险越高,所带来收益越高;风险越低,所带来收益越低!
这里会出一道题:
根据CML公式来判断一个组合是否是有效。
(如果给定值代入使等式成立,则组合是一个有效组合
7.证券市场线(SML(ppt3-36
证券市场线(SML
描述是当证券市场达到均衡时,单个证券收益与风险之间关系。
8.β系数性质(ppt3-44
性质1:
两个证券构成投资组合之β系数,等于这两个证券β系数加权平均。
性质2:
证券线性投资组合β系数,等于这些证券β系数线性组合。
9.CML与SML关系
CML描述是均衡条件下,有效投资组合必须满足直线。
SML描述是均衡条件下,任何一个证券必须满足直线。
四.状态偏好理论(ARROW-DEBREW经济
1.纯证券(ppt5-4
Lucas树经济在1期有两个可能状态,因此。
对于每一个状态,我们可以定义相应状态或有要求权。
总括起来我们共有Ω个状态或有要求权。
这些状态或有要求权叫做:
纯证券也叫Arrow—Debreu证券、状态或有要求权,状态或有证券。
定义:
只在某个特定状态下支付为一个单位,其它状态下支付为零证券称为纯证券。
由所有状态或有证券,也就是它们完全集合所构成证券市场叫做Arrow-Debreu证券市场。
2.完全资本市场(ppt5-3
含义:
假定资本市场未来一共有S个状态,当资本市场上存在S个不同纯证券时,或者能够由资本市场上证券构造出S个纯证券时,我们称该市场是完全。
也就是说市场中任意有限消费计划都可以通过有限成本可交易证券组合来融资。
命题:
由数学知识可知,所有证券秩等于S时,市场完全。
3.纯证券价格(ppt5-7(书34
纯证券价格,也叫做状态i状态价格。
记为:
它是每个纯证券期初价格。
为:
状态i或有证券在0期价格。
在这里要注意尽管实际支付中,证券价格可能为负值。
但是状态价格有一个重要性质:
它必须为正。
也就是说,为了得到1份状态或有证券,在0期参与者必须支付一个正价格。
否则就成为所谓免费午餐:
假设状态或有要求权价格为负,这就意味着参与者可以得到证券也就是得到以后支付同时,还得到眼下收入。
这是不可以。
所以Φ>>0
如果知道了市场中证券支付以及状态,可以推导出它价格
4.套利(ppt5-11
套利定义—套利是一种交易,无需承担任何成本而能够获利一种交易。
与之对应是套利机会。
套利分类:
跨时套利跨地套利跨风险套利
5.一价律(ppt5-12
资本市场均衡条件是:
市场价格恰好使得每个证券供应量等于其需求量。
在本模型框架下。
市场均衡条件之一是:
具有相同状态依存收益向量任何两种证券或
者证券组合必须有相同定价。
这个就是一价律。
若允许卖空,则市场均衡第二个必要条件为不存在套利机会。
6.决定证券价格经济因素(ppt5-16
由于任何一种市场证券总是可以由纯证券集生成,因此可以从纯证券价格决定因素来理解市场证券价格确定。
纯证券价格决定因素:
(1消费时间偏好以及资本生产能力
(2对某种状态发生概率估计
(3
期末总财富状态变动性给定时,个人对风险偏好
7.最优组合决策
在完全市场下,可以将证券拆分为一些基本证券。
经济人问题:
F.O.C一阶条件。
S.O.C
二阶条件。
8.参与者优化(书36
(1目标函数
禀赋-资源(e0,e1。
消费计划-需求(C0,C1
考虑到一个参与者他禀赋为e,效用函数为U。
给定市场中交易状态或有证券,我们可以认为参与者1期禀赋就是他对这些证券初
始持有量。
所以下面组合**
所带来支付与参与者在1期禀赋完全一样。
这里我们也把**叫做复制组合。
它支付复制了给定一个支付,这里是e1.组合**市场价值为**
这也称作他金融财富或者财富。
它是禀赋总市值。
W=期初禀赋+φ转置×期末禀赋
(2预算约束
预算约束形式很简单,即现在和将来消费总成本不能超过其总财富。
C0+φ转置×C1=W=e0+φ转置×e1
总花费=总收入
这里还要理解王江书上表示形式:
转置T。
中间·号。
以及字母上面三角号。
可能会考到试题~
1.求均衡价格:
2个人,2个状态,告诉你禀赋,求市场均衡。
(1.个人问题时求极大化效益。
注意在此处。
Rf为负
个人最优消费均衡条件下市场出清。
讲过例题:
(书45
例1.考虑到如下经济。
在一期可能状态a,b.
(1描述所有ARROW-DEBREU证券支付向量。
记这些证券价格向量为φ。
(2考虑一个拥有如下禀赋参与者:
期初禀赋为0.期末为2,1
把他禀赋表示成ARROW-DEBREU证券组合。
(3
计算他金融财富。
写出他预算集
(4假设参与者效用函数如下:
**
不考虑消费非负约束,写出他优化问题。
求解他最优消费选择。
(5讨论他小诶如何依赖于ARROW-DEBREU
证券价格向量φ。
(6证明在某些价格下,他(在某些时期/状态下消费可能是负。
例题2.
五.投资组合选择
1.一般框架下组合理论(ppt3-2
主要假设:
(1经济人效用:
(2初始财富W0
(3两财富情形:
其中一个财富为0收益,另外一个财富收益为X
(4问题归结:
投资数量a到风险资产,投资数量(W0-a
到无风险资产处。
这里命题一定要看:
命题1:
V´(0符号决定符号,从而与具有相同符号
命题2:
假设效用函数可微、投资者为风险厌恶者,在标准组合问题中,当且仅当超额收益为正时,对风险资产投资数量为正;当且仅当超额收益为负时,对风险资产投资数量为负。
下列论断似乎是不可能:
只要期望超额收益为正,甚至很小,则暴露风险是最优。
命题3:
风险资产最优投资份额近似地与超额收益率期望与方差比率成正比率,比率系数为相对风险厌恶系数倒数。
命题4:
在CARA效用和正态假设下,风险资产最优投资份额刚好与超额收益率期望与方差比率成正比率,比率系数为相对风险厌恶系数倒数。
主要结论:
分离定理(ppt3-12
分离定理:
投资者对风险资产投资模式与个人偏好无关,即组合选择与偏好分离。
含义:
对任何一个理性投资者,尽管他或她最终投资组合选择不相同,但对风险资产选择是相同:
每个投资者以无风险利率借或贷,然后把所筹集到或所剩下资金按相同比例投资到不同风险资产上。
这一相同比例由切点T表示投资组合来决定。
六.套利和资产定价理论
1.复合证券(书49
绝大多数可交易证券支付分布都要比ARROW-DEBREW证券复杂。
通常,它们不止一个状态下有支付。
比如,无风险债券在任意状态下都有一个固定数额支付而股票在多个状态下有多个不同支付。
这些证券又是也叫做复合证券。
它们制服可以看成是由状态或有证券组合而产生。
记:
n=1,。
。
。
N为市场中交易证券,每一个证券有支付向量为。
**
那么证券市场结构就由支付矩阵X给定。
2.冗余证券(书50(名词解释
给定市场上交易证券集合,它们支付可能是相关联。
比如,可能存在一只证券j,它支付可以表示成其他证券支付线性组合,在这种情况下,支付矩阵X不是满秩。
**,这里xn是证券n支付向量。
很明显,由原来N只证券组合所生成任意支付也可以由提出了证券j以后N-1只证券组合产生。
证券j也可以称做冗余证券。
冗余证券没有额外价值。
3.资产定价模型(书53
记交易证券价格向量为S=[S1;...;SN],支付矩阵为X。
我们吧从X到S映射称做资产定价关系。
或者是资产定价模型。
4.套利(书53(名词解释套利(ppt5-11
套利定义—套利是一种交易,无需承担任何成本而能够获利一种交易。
与之对应是套利机会。
套利分类:
跨时套利跨地套利跨风险套利
将满足下列条件组合θ称作套利或套利机会。
(1期初价格S转置×θ≤0
(2期末支付X×θ≥0
(3至少有一个不等式严格成立
同时三种类型套利机会:
(1第1类套利:
期初价格S转置×θ<0且X×θ=0
(2第2类套利:
期初价格S转置×θ=0且X×θ>0
(3第3类套利:
期初价格S转置×θ<0且X×θ>0
第一类套利中,组合初始价格为负。
也就是说,参与者在得到组合同时还得到正支付,而未来任意可能状态下支付为0。
第一类套利容许参与者获收益而不承担任何未来责任。
第一类套利主要特征就是它支付没有任何不确定性。
今天支付为正,未来支付为0.第2类套利中,组合初始投资为0却得到正未来支付。
这里正支付意味着支付在所有状态下非负并且在某些状态下严格为正。
初始投资为0组合也叫做套利组合。
第2类套利支付时不确定。
但这种不确定是“好”,即它总为正只是数额不确定而已。
第3类套利由第1类套利和第2类套利结合而成。
是否存在套利机会。
请问是哪一种套利机会~构建1,2,3类套利机会。
5.无套利理论(书55
定理4.2在市场均衡中不存在套利机会。
无套利原理:
假设证券市场中不存在套利机会。
这里依赖于两个方面:
(1(至少部分市场参与者不满足性(2市场无摩擦
6.资产定价基本定理(书56
资产定价关系或模型指是从证券支付X到其价格S映射。
S=V(x
其中V(·常称为定价算子或估价算则。
定理4.3:
(一价定律两个具有相同支付证券(或组合价格必定相同。
也就是如果x=y,则V(x=V(y
一价定律一个推论是:
未来支付为0证券或证券组合价格为0:
V(x=0;
定理4.4:
支付为正证券或证券组合价格为正。
即,如果x>0,则V(x>0
定理4.5:
给定两只证券1和2。
如果证券1支付总是大于证券2,那么证券1价格必定高于证券2价格,即:
如果x1≥x2,则V(x1≥V(x2.因此V(·是一个递增算子。
定理4.6:
在一个无摩擦市场中,定价算子是递增线性算子,也就是说,对于任何a,b属于R,以及具有支付x,y和z=ax+by3只证券,V(ax+by=aV(x+bV(y。
这也就是说V(·是线性算子,并且V(0=0.
定理4.7:
(资产定价基本定理证券市场中不存在套利机会充要条件为存在φ>>0使得**
定理4.8:
在一个完全市场中,状态价格向量是唯一。
7.风险中性定价和鞅(书59
式4.9叫做风险中性定价公式。
Q则被称作为风险中性测度。
定义4.3:
如果一个随机过程,z1,z2。
。
。
现在值恒等于对于其未来值条件期望:
**那么我们称之为鞅。
4.10**所表述是,以债券价格为计量单位,证券价格在风险中性测度Q下市鞅。
因此,Q也称做等价鞅
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金融 经济学 完整版 复习 框架