高考数学大一轮复习第三章三角函数解三角形教师用书文.docx
- 文档编号:23522343
- 上传时间:2023-05-17
- 格式:DOCX
- 页数:118
- 大小:404.41KB
高考数学大一轮复习第三章三角函数解三角形教师用书文.docx
《高考数学大一轮复习第三章三角函数解三角形教师用书文.docx》由会员分享,可在线阅读,更多相关《高考数学大一轮复习第三章三角函数解三角形教师用书文.docx(118页珍藏版)》请在冰豆网上搜索。
高考数学大一轮复习第三章三角函数解三角形教师用书文
第三章三角函数、解三角形
第一节
任意角和弧度制及任意角的三角函数
1.角的概念的推广
(1)定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
(2)分类
(3)终边相同的角:
所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:
把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.
(2)公式:
角α的弧度数公式
|α|=(l表示弧长)
角度与弧度的换算
①1°=rad;②1rad=°
弧长公式
l=|α|r
扇形面积公式
S=lr=|α|r2
3.任意角的三角函数
三角函数
正弦
余弦
正切
定义
设α是一个任意角,它的终边与单位圆交于点P(x,y),那么
y叫做α的正弦,记作sinα
x叫做α的余弦,记作cosα
叫做α的正切,记作tanα
各象限符号
一
+
+
+
二
+
-
-
三
-
-
+
四
-
+
-
三角函
数线
有向线段MP为正弦线
有向线段OM为余弦线
有向线段AT为正切线
[小题体验]
1.若θ满足sinθ<0,cosθ>0,则θ的终边所在的象限为( )
A.第一象限 B.第二象限
C.第三象限D.第四象限
答案:
D
2.已知角α的终边经过点(-4,-3),则cosα=( )
A.B.-
C.D.-
答案:
B
3.已知半径为120mm的圆上,有一条弧的长是144mm,则该弧所对的圆心角的弧度数为________.
答案:
1.2
1.注意易混概念的区别:
象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.
2.角度制与弧度制可利用180°=πrad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.
3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.
4.三角函数的定义中,当P(x,y)是单位圆上的点时有sinα=y,cosα=x,tanα=,但若不是单位圆时,如圆的半径为r,则sinα=,cosα=,tanα=.
[小题纠偏]
1.若角α终边上有一点P(x,5),且cosα=(x≠0),则sinα=( )
A.B.
C.D.-
答案:
A
2.3900°是第________象限角,-1000°是第________象限角.
答案:
四 一
[题组练透]
1.给出下列四个命题:
①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )
A.1个 B.2个
C.3个D.4个
解析:
选C -是第三象限角,故①错误;=π+,从而是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.
2.若α是第二象限的角,则下列结论一定成立的是( )
A.sin>0B.cos>0
C.tan>0D.sincos<0
解析:
选C ∵+2kπ<α<π+2kπ,k∈Z,
∴+kπ<<+kπ.
当k为偶数时,是第一象限角;
当k为奇数时,是第三象限角,即tan>0一定成立,故选C.
3.在-720°~0°范围内所有与45°终边相同的角为________.
解析:
所有与45°有相同终边的角可表示为:
β=45°+k×360°(k∈Z),
则令-720°≤45°+k×360°<0°,
得-765°≤k×360°<-45°,解得-≤k<-,
从而k=-2或k=-1,代入得β=-675°或β=-315°.
答案:
-675°或-315°
4.已知角β的终边在直线x-y=0上,则角β的集合S=____________________.
解析:
如图,直线x-y=0过原点,倾斜角为60°,
在0°~360°范围内,
终边落在射线OA上的角是60°,
终边落在射线OB上的角是240°,
所以以射线OA,OB为终边的角的集合为:
S1={β|β=60°+k·360°,k∈Z},
S2={β|β=240°+k·360°,k∈Z},
所以角β的集合S=S1∪S2
={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}
={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}
={β|β=60°+k·180°,k∈Z}.
答案:
{β|β=60°+k·180°,k∈Z}
[谨记通法]
1.终边在某直线上角的求法4步骤
(1)数形结合,在平面直角坐标系中画出该直线;
(2)按逆时针方向写出[0,2π)内的角;
(3)再由终边相同角的表示方法写出满足条件角的集合;
(4)求并集化简集合.
2.确定kα,(k∈N*)的终边位置3步骤
(1)用终边相同角的形式表示出角α的范围;
(2)再写出kα或的范围;
(3)然后根据k的可能取值讨论确定kα或的终边所在位置.
[题组练透]
1.若一扇形的圆心角为72°,半径为20cm,则扇形的面积为( )
A.40πcm2 B.80πcm2
C.40cm2D.80cm2
解析:
选B ∵72°=,
∴S扇形=|α|r2=××202=80π(cm2).
2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( )
A.1 B.4 C.1或4 D.2或4
解析:
选C 设此扇形的半径为r,弧长为l,
则解得或
从而α===4或α===1.
3.扇形弧长为20cm,圆心角为100°,则该扇形的面积为________cm2.
解析:
由弧长公式l=|α|r,得
r==,∴S扇形=lr=×20×=.
答案:
[谨记通法]
弧度制下有关弧长、扇形面积问题的解题策略
(1)明确弧度制下弧长公式l=|α|r,扇形的面积公式是S=lr=|α|r2(其中l是扇形的弧长,α是扇形的圆心角).
(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量,如“题组练透”第3题.
[锁定考向]
任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.
常见的命题角度有:
(1)三角函数定义的应用;
(2)三角函数值的符号判定;
(3)三角函数线的应用.
[题点全练]
角度一:
三角函数定义的应用
1.已知角α的终边经过点P(-x,-6),且cosα=-,则+=________.
解析:
∵角α的终边经过点P(-x,-6),且cosα=-,
∴cosα==-,即x=或x=-(舍去),
∴P,
∴sinα=-,∴tanα==,
则+=-+=-.
答案:
-
角度二:
三角函数值的符号判定
2.若sinαtanα<0,且<0,则角α是( )
A.第一象限角 B.第二象限角
C.第三象限角D.第四象限角
解析:
选C 由sinαtanα<0可知sinα,tanα异号,
则α为第二或第三象限角.
由<0可知cosα,tanα异号,
则α为第三或第四象限角.
综上可知,α为第三象限角.
角度三:
三角函数线的应用
3.函数y=lg(3-4sin2x)的定义域为________.
解析:
∵3-4sin2x>0,
∴sin2x<,
∴- 利用三角函数线画出x满足条件的终边范围(如图阴影部分所示), ∴x∈(k∈Z). 答案: (k∈Z) [通法在握] 定义法求三角函数的3种情况 (1)已知角α终边上一点P的坐标,可求角α的三角函数值.先求P到原点的距离,再用三角函数的定义求解. (2)已知角α的某三角函数值,可求角α终边上一点P的坐标中的参数值,可根据定义中的两个量列方程求参数值. (3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标. [演练冲关] 1. 如图,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα的值为( ) A.B.- C.D.- 解析: 选D 因为点A的纵坐标yA=,且点A在第二象限,又因为圆O为单位圆,所以A点横坐标xA=-,由三角函数的定义可得cosα=-. 2.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( ) A.-B.- C.D. 解析: 选B 设P(t,2t)(t≠0)为角θ终边上任意一点,则cosθ=. 当t>0时,cosθ=;当t<0时,cosθ=-. 因此cos2θ=2cos2θ-1=-1=-. 一抓基础,多练小题做到眼疾手快 1.已知点P(tanα,cosα)在第三象限,则角α的终边在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 解析: 选B 因为点P在第三象限,所以所以α的终边在第二象限,故选B. 2.设角α终边上一点P(-4a,3a)(a<0),则sinα的值为( ) A. B.- C. D.- 解析: 选B 设点P与原点间的距离为r, ∵P(-4a,3a),a<0, ∴r==|5a|=-5a. ∴sinα==-. 3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( ) A.B. C.D.2 解析: 选C 设圆半径为r,则其内接正三角形的边长为r,所以r=αr, 所以α=. 4.在直角坐标系中,O是原点,A(,1),将点A绕O逆时针旋转90°到B点,则B点坐标为__________. 解析: 依题意知OA=OB=2,∠AOx=30°,∠BOx=120°, 设点B坐标为(x,y),所以x=2cos120°=-1,y=2sin120°=,即B(-1,). 答案: (-1,) 5.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sinθ=-,则y=________. 解析: 因为sinθ==-, 所以y<0,且y2=64,所以y=-8. 答案: -8 二保高考,全练题型做到高考达标 1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.B. C.-D.- 解析: 选C 将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快10分钟,故应转过的角为圆周的,即为-×2π=-. 2.(2016·福州一模)设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=( ) A.B. C.-D.- 解析: 选D 因为α是第二象限角,所以cosα=x<0, 即x<0.又cosα=x=. 解得x=-3,所以tanα==-. 3.已知角α终边上一点P的坐标是(2sin2,-2cos2),则sinα等于( ) A.sin2B.-sin2 C.cos2D.-cos2 解析: 选D 因为r==2,由任意三角函数的定义,得sinα==-cos2. 4.设θ是第三象限角,且=-cos,则是( ) A.第一象限角B.第二象限角 C.第三象限角D.第四象限角 解析: 选B 由θ是第三象限角,知为第二或第四象限角,∵=-cos,∴cos<0,综上知为第二象限角. 5.集合中的角所表示的范围(阴影部分)是( ) 解析: 选C 当k=2n(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样;当k=2n+1(n∈Z)时,2nπ+π+≤α≤2nπ+π+,此时α表示的范围与π+≤α≤π+表示的范围一样. 6.与2017°的终边相同,且在0°~360°内的角是________. 解析: ∵2017°=217°+5×360°, ∴在0°~360°内终边与2017°的终边相同的角是217°. 答案: 217° 7.已知α是第二象限的角,则180°-α是第________象限的角. 解析: 由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k∈Z),所以180°-α是第一象限的角. 答案: 一 8.一扇形是从一个圆中剪下的一部分,半径等于圆半径的,面积等于圆面积的,则扇形的弧长与圆周长之比为________. 解析: 设圆的半径为r,则扇形的半径为,记扇形的圆心角为α, 则=, ∴α=. ∴扇形的弧长与圆周长之比为==. 答案: 9.在(0,2π)内,使sinx>cosx成立的x的取值范围为____________________. 解析: 如图所示,找出在(0,2π)内,使sinx=cosx的x值,sin=cos=,sin=cos=-.根据三角函数线的变化规律标出满足题中条件的角x∈. 答案: 10.已知扇形AOB的周长为8. (1)若这个扇形的面积为3,求圆心角的大小; (2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB. 解: 设扇形AOB的半径为r,弧长为l,圆心角为α, (1)由题意可得 解得或 ∴α==或α==6. (2)法一: ∵2r+l=8, ∴S扇=lr=l·2r≤2=×2=4, 当且仅当2r=l,即α==2时,扇形面积取得最大值4. ∴圆心角α=2,弦长AB=2sin1×2=4sin1. 法二: ∵2r+l=8, ∴S扇=lr=r(8-2r)=r(4-r)=-(r-2)2+4≤4, 当且仅当r=2,即α==2时,扇形面积取得最大值4. ∴弦长AB=2sin1×2=4sin1. 三上台阶,自主选做志在冲刺名校 1.若α是第三象限角,则下列各式中不成立的是( ) A.sinα+cosα<0B.tanα-sinα<0 C.cosα-tanα<0D.tanαsinα<0 解析: 选B ∵α是第三象限角,∴sinα<0,cosα<0,tanα>0,则可排除A、C、D. 2.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为( ) A.1 B.-1 C.3 D.-3 解析: 选B 由α=2kπ-(k∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sinθ<0,cosθ>0,tanθ<0. 所以y=-1+1-1=-1. 3.已知sinα<0,tanα>0. (1)求α角的集合; (2)求终边所在的象限; (3)试判断tansincos的符号. 解: (1)由sinα<0,知α在第三、四象限或y轴的负半轴上; 由tanα>0,知α在第一、三象限,故α角在第三象限, 其集合为. (2)由2kπ+π<α<2kπ+,k∈Z, 得kπ+<<kπ+,k∈Z, 故终边在第二、四象限. (3)当在第二象限时,tan<0, sin>0,cos<0, 所以tansincos取正号; 当在第四象限时,tan<0, sin<0,cos>0, 所以tansincos也取正号. 因此,tansincos取正号. 第二节 同角三角函数的基本关系与诱导公式_ 1.同角三角函数的基本关系式 (1)平方关系: sin2α+cos2α=1; (2)商数关系: tanα=. 2.诱导公式 组序 一 二 三 四 五 六 角 2kπ+ α(k∈Z) π+α -α π-α -α +α 正弦 sinα -sinα -sinα sinα cosα cos_α 余弦 cosα -cosα cosα -cos_α sinα -sinα 组序 一 二 三 四 五 六 正切 tanα tanα -tanα -tan_α 口诀 函数名不变 符号看象限 函数名改变 符号看象限 记忆 规律 奇变偶不变,符号看象限 [小题体验] 1.已知sin=,α∈,则sin(π+α)=______. 答案: - 2.若sinθcosθ=,则tanθ+的值为________. 答案: 2 1.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤: 去负—脱周—化锐. 特别注意函数名称和符号的确定. 2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3.注意求值与化简后的结果一般要尽可能有理化、整式化. [小题纠偏] 1.已知α是第二象限角,sinα=,则cosα=________. 答案: - 2. (1)sin=________, (2)tan=________. 答案: (1) (2) [题组练透] 1.化简sin(-1071°)sin99°+sin(-171°)sin(-261°)的结果为( ) A.1 B.-1 C.0D.2 解析: 选C 原式=(-sin1071°)·sin99°+sin171°·sin261° =-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin9°cos9°-sin9°cos9°=0. 2.已知A=+(k∈Z),则A的值构成的集合是( ) A.{1,-1,2,-2} B.{-1,1} C.{2,-2}D.{1,-1,0,2,-2} 解析: 选C 当k为偶数时,A=+=2; k为奇数时,A=-=-2. 3.已知tan=,则tan=________. 解析: tan=tan =tan =-tan=-. 答案: - 4.(易错题)设f(α)=,则f=________. 解析: ∵f(α)= == =, ∴f====. 答案: [谨记通法] 1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤 也就是: “负化正,大化小,化到锐角就好了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形; (2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值,如“题组练透”第4题. [典例引领] 1.已知=5,则sin2α-sinαcosα的值为( ) A.- B.- C.D. 解析: 选D 依题意得: =5, ∴tanα=2. ∴sin2α-sinαcosα = ===. 2.若α是三角形的内角,且tanα=-,则sinα+cosα的值为________. 解析: 由tanα=-,得sinα=-cosα, 将其代入sin2α+cos2α=1, 得cos2α=1,∴cos2α=,易知cosα<0, ∴cosα=-,sinα=, 故sinα+cosα=-. 答案: - [由题悟法] 同角三角函数基本关系式的应用技巧 技巧 解读 适合题型 切弦 互化 主要利用公式tanθ=化成正弦、余弦,或者利用公式=tanθ化成正切 表达式中含有sinθ,cosθ与tanθ “1”的 变换 1=sin2θ+cos2θ=cos2θ(1+tan2θ)=tan=(sinθ±cosθ)2∓2sinθcosθ 表达式中需要利用“1”转化 和积 转换 利用(sinθ±cosθ)2=1±2sinθcosθ的关系进行变形、转化 表达式中含有sinθ±cosθ或sinθcosθ [即时应用] 1.若sinα=-,且α为第四象限角,则tanα的值等于( ) A.B.- C.D.- 解析: 选D 法一: 因为α为第四象限的角,故cosα===, 所以tanα===-. 法二: 因为α是第四象限角,且sinα=-,所以可在α的终边上取一点P(12,-5),则tanα==-.故选D. 2.已知sinθ+cosθ=,θ∈,则sinθ-cosθ的值为( ) A.B.- C.D.- 解析: 选B 因为(sinθ+cosθ)2=sin2θ+cos2θ+2sinθ·cosθ=1+2sinθcosθ=,所以2sinθcosθ=,则(sinθ-cosθ)2=sin2θ+cos2θ-2sinθ·cosθ=1-2sinθcosθ=. 又因为θ∈,所以sinθ 所以sinθ-cosθ=-. 一抓基础,多练小题做到眼疾手快 1.若α∈,sinα=-,则cos(-α)=( ) A.- B. C.D.- 解析: 选B 因为α∈,sinα=-,所以cosα=,即cos(-α)=. 2.已知sin(π+θ)=-cos(2π-θ),|θ|<,则θ等于( ) A.-B.- C.D. 解析: 选D ∵sin(π+θ)=-cos(2π-θ), ∴-sinθ=-cosθ,∴tanθ=.∵|θ|<,∴θ=. 3.(2017·赣中南五校联考)已知倾斜角为α的直线l与直线x+2y-3=0垂直,则cos的值为( ) A.B.- C.2D.- 解析: 选A 由题意可得tanα=2, 所以cos=sin2α===.故选A. 4.已知α∈,sinα=,则tanα=________. 解析: ∵α∈,∴cosα=-=-, ∴tanα==-. 答案: - 5.如果sin(π+A)=,那么cos的值是________. 解析: ∵sin(π+A)=,∴-sinA=. ∴cos=-sinA=. 答案: 二保高考,全练题型做到高考达标 1.已知tan(α-π)=,且α∈,则sin=( ) A.B.- C.D.- 解析: 选B 因为tan(α-π)=,所以tanα=. 又因为α∈,所以α为第三象限的角, sin=cosα=-. 2.已知sin=,则cos=( ) A.B.- C.D.- 解析: 选D ∵cos=sin =sin=-sin=-. 3.已知f(x)=asin(πx+α)+bcos(πx+β)+4,若f(2016)=5,则f(2017)的值是( ) A.2B.3 C.4D.5 解析: 选B ∵f(2016)=5, ∴asin(2016π+α)+bcos(2016π+β)+4=5, 即asinα+bcosβ=1. ∴f(2017)=asin(2017π+α)+bcos(2017π+β)+4=-asinα-bcosβ+4=-1+4=3. 4.(2017·广州模拟)当θ为第二象限角,且sin=时,的值是( ) A.1B.-1 C.±1D.0 解析: 选B ∵s
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 第三 三角函数 三角形 教师 用书文