八年级期末几何综合复习.docx
- 文档编号:23218011
- 上传时间:2023-05-15
- 格式:DOCX
- 页数:17
- 大小:338.46KB
八年级期末几何综合复习.docx
《八年级期末几何综合复习.docx》由会员分享,可在线阅读,更多相关《八年级期末几何综合复习.docx(17页珍藏版)》请在冰豆网上搜索。
八年级期末几何综合复习
几何综合复习
(一)
1.如图,设△ABC和△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是( )
A.115°B.120°C.125°D.130°
2.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=( )
A.18°B.20°C.25°D.15°
3.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:
①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=
EC;
⑤AE=NC,其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
4.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则
的值为 .
5.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为 .
6.如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为 .
7.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为 度.
8如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,点M在x轴负半轴上,S△ABM=6.当线段OM最长时,点M的坐标为 .
9.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD,求证:
(1)△BEF为等腰直角三角形;
(2)∠ADC=∠BDG.
10.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°
(1)求证:
△ABM为等腰三角形;
(2)求∠BMC的度数.
11.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(a﹣5)2=0
(1)点A的坐标为 ,点B的坐标为 ;
(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交BE延长线于D,试求点D的坐标;
(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论.
12.如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,
(1)求证:
BP=2PQ;
(2)连PC,若BP⊥PC,求
的值
13.在△ABC中,AD平分∠BAC交BC于D.
(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC于F,DM=DN,证明:
AM+AN=2AF;
(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN的周长.
14.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.
(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:
AF=CE;
(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.
15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.
(1)如图1,若∠ACD=60°,则∠AFD= ;
(2)如图2,若∠ACD=α,连接CF,则∠AFC= (用含α的式子表示);
(3)将图1中的△ACD绕点C顺时针旋转如图3,连接AE、AB、BD,∠ABD=80°,求∠EAB的度数.
16.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.
(1)如图1,求证:
∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?
若不变,求出OP的值;若变化,求OP的取值范围.
17.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足
+|a﹣2b+2|=0.
(1)求证:
∠OAB=∠OBA;
(2)如图1,若BE⊥AE,求∠AEO的度数;
(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.
19.如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+
=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.
(1)求C点坐标;
(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;
(3)如图③在
(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:
S△AEF的值是否会发生变化?
如果没有变化,请直接写出它们的比值 (不需要解答过程或说明理由).
20.如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.
(1)求点D的坐标;
(2)求∠AKO的度数;
(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.
21.如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点
(1)如图,若OC=5,求BD的长度
(2)设BD交x轴于点F,求证:
∠OFA=∠DFA
(3)如图,若正△AOB的边长为4,点C为x轴上一动点,以AC为边在直线AC下方作正△ACD,连接ED,求ED的最小值
几何综合复习
(二)
1.如图,在△ABC中,∠C=90°,AC=3,BC=4,AB=5,角平分线AF和BG交于D,DE⊥AB于E,则DE长为 .
2.已知AD为△ABC的内角平分线,AB=7cm,AC=8cm,BC=9cm,则CD的长为 cm.
如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连结BE,且BE恰好平分∠ABC,判断AB的长与AD+BC的大小关系并证明.
3.如图,△ABC中,∠ACB=90°,AC=BC,D在BC上,BM⊥AD于M,求∠CMA的度数.
4.如图,BD是等腰直角△ABC的腰AC上的中线,AE⊥BD交BD、BC于E、F,
求证:
(1)∠ABD=∠CAF;
(2)∠ADB=∠CDF.
5.如图,平面直角坐标系中,A(2,0),△OAC为等边三角形.
(1)如图1,若D(0,4),△ADE为等边三角形,∠DAC=10°,求∠AEC的度数.
(2)如图2,若P为x轴正半轴上一点,且P在A的右侧,△PCM为等边三角形,MA的延长线交y轴于N,求AM﹣AP的值.
(3)如图3,若P为x轴正半轴上一点,且P在A的右侧,△PAM为等边三角形,OM与PC交于F,求证:
AF+MF=PF.
6.已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点.
(1)如图1,若点C的横坐标为﹣4,求点B的坐标;
(2)如图2,BC交x轴于D,若点C的纵坐标为3,A(5,0),求点D的坐标.
(3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求S△BEM:
S△ABO.
7.如图,E是正方形ABCD中CD边上的任意一点,以点A为中心,把△ADE顺时针旋转90°得△ABE1,∠EAE1的平分线交BC边于点F,求证:
△CFE的周长等于正方形ABCD的周长的一半.
8.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD,求证:
(1)△BEF为等腰直角三角形;
(2)∠ADC=∠BDG.
9.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°
(1)求证:
△ABM为等腰三角形;
(2)求∠BMC的度数.
10.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.
(1)如图1,若∠ABC=60°、∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.
①求证:
CE=AG;
②若BF=2AF,连接CF,求∠CFE的度数;
(2)如图2,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,直接写出
= .
11.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.
(1)若a、b满足a2+b2﹣4a﹣2b+5=0.
①求a、b的值;
②如图1,在①的条件下,将点B在x轴上平移,且b满足:
0<b<2;在第一象限内以AB为斜边作等腰Rt△ABC,请用b表示S四边形AOBC,并写出解答过程.
(2)若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF.
①如图2,判断AF与BF的关系并说明理由;
②若BF=OA﹣OB,则∠OAF= (直接写出结果).
12.已知点E在等边△ABC的边AB上,点P在射线CB上,AE=BP
(1)如图1,求证:
AP=CE;
(2)如图2,求证:
PE=EC;
(3)如图3,若AE=2BE,延长AP至点M使PM=AP,连接CM,求证:
CM=CE;
13.CO是△ACE的高,点B在OE上,OB=OA,AC=BE
(1)如图1,求证:
∠A=2∠E;
(2)如图2,CF是△ACE的角平分线.
①求证:
AC+AF=CE;
②判断三条线段CE、EF、OF之间的数量关系,并给出证明.
14.如图,在等腰Rt△ABC中,∠ABC=90°,O是AC的中点,P,Q分别在AB,BC上(P,Q与A,B,C都不重合),OP⊥OQ,OS⊥AQ交AB于S.下列结论:
BQ=BS;
PA=QB;
S是PB的中点;
的值为定值.其中正确结论的个数是()
15.如图,AB⊥BC,AD⊥DC,∠BAD=130°,点M,N分别在BC,CD上,当△AMN得周长最小时,∠MAN的度数为_________.
http:
//www.xkb1.com
16.如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=45°,则△DMN的周长为___________.
17.如图1,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.
(1)直接写出∠ADE的度数_______;
(2)求证:
DE=AD+DC;
(3)作BP平分∠ABE,EF⊥BP,垂足为F,(如图2),若EF=3,求BP的长.
18.如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.
(1)点C的坐标为:
__________(用含m,n的式子表示);
(2)求证:
BM=BN;
(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:
D,G关于x轴对称.
19.如图1,在平面直角坐标系中,△ABC的顶点A(-3,0)、B(0,3),AD⊥BC于D交BC于D点,交y轴于点E(0,1)
(1)求C点的坐标
(2)如图2,过点C作CF⊥CB,且截取CF=CB,连接BF,求△BCF的面积
(3)如图3,点P为y轴正半轴上一动点,点Q在第三象限内,QP⊥PC,且QP=PC,连接QO,过点Q作QR⊥x轴于R,求
的值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 期末 几何 综合 复习