指数函数及其性质章节练习.docx
- 文档编号:2314658
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:14
- 大小:25.32KB
指数函数及其性质章节练习.docx
《指数函数及其性质章节练习.docx》由会员分享,可在线阅读,更多相关《指数函数及其性质章节练习.docx(14页珍藏版)》请在冰豆网上搜索。
指数函数及其性质章节练习
2.1.2指数函数及其性质
整体设计
教学分析
有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质.
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:
GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值.
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持.
三维目标
1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.
2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力.
3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.
重点难点
教学重点:
指数函数的概念和性质及其应用.
教学难点:
指数函数性质的归纳、概括及其应用.
课时安排
3课时
教学过程
第1课时指数函数及其性质
(1)
导入新课
思路1.用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢y与漂洗次数x的关系式,它是函数关系式吗?
若是,请计算若要使存留的污垢不超过原有的,则至少要漂洗几次?
教师引导学生分析,列出关系式y=()x,发现这个关系式是个函数关系且它的自变量在指数的位置上,这样的函数叫指数函数,引出本节课题.
思路2.教师复习提问指数幂的运算性质,并要求学生计算23,20,2-2,16,27,49.再提问怎样画函数的图象,学生思考,分组交流,写出自己的答案8,1,,2,9,,先建立平面直角坐标系,再描点,最后连线.点出本节课题.
思路3.在本章的开头,问题
(2)中时间t和碳14含量P的对应关系P=[()]t,如果我们用x表示时间,y表示碳14的含量,则上述关系可表示为y=[()]x,这是我们习惯上的函数形式,像这种自变量在指数的位置上的函数,我们称为指数函数,下面我们给出指数函数的确切概念,从而引出课题.
推进新课
新知探究
提出问题
1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x年后的剩留量y与x的关系式是_________.(y=0.84x)
2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是_________.(y=2x)
提出问题
(1)你能说出函数y=0.84x与函数y=2x的共同特征吗?
(2)你是否能根据上面两个函数关系式给出一个一般性的概念?
(3)为什么指数函数的概念中明确规定a>0,a≠1?
(4)为什么指数函数的定义域是实数集?
(5)如何根据指数函数的定义判断一个函数是否是一个指数函数?
请你说出它的步骤.
活动:
先让学生仔细观察,交流讨论,然后回答,教师提示点拨,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己的应用知识的能力,教师巡视,个别辅导,针对学生共性的问题集中解决.
问题
(1)看这两个函数的共同特征,主要是看底数和自变量以及函数值.
问题
(2)一般性的概念是指用字母表示不变化的量即常量.
问题(3)为了使运算有意义,同时也为了问题研究的必要性.
问题(4)在(3)的规定下,我们可以把ax看成一个幂值,一个正数的任何次幂都有意义.
问题(5)使学生回想指数函数的定义,根据指数函数的定义判断一个函数是否是一个指数函数,紧扣指数函数的形式.
讨论结果:
(1)对于两个解析式我们看到每给自变量x一个值,y都有唯一确定的值和它对应,再就是它们的自变量x都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1.0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x和y.
(2)对于两个解析式y=0.84x和y=2x,我们把两个函数关系中的常量用一个字母a来表示,这样我们得到指数函数的定义:
一般地,函数y=ax(a>0,a≠1)叫做指数函数,其中x叫自变量,函数的定义域是实数集R.
(3)a=0时,x>0时,ax总为0;x≤0时,ax没有意义.
a<0时,如a=-2,x=,ax=(-2)=显然是没有意义的.
a=1时,ax恒等于1,没有研究的必要.
因此规定a>0,a≠1.此解释只要能说明即可,不要深化.
(4)因为a>0,x可以取任意的实数,所以指数函数的定义域是实数集R.
(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x且在指数位置上,满足这两个条件的函数才是指数函数.
提出问题
(1)前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢?
(2)前面我们学习函数的时候,如何作函数的图象?
说明它的步骤.
(3)利用上面的步骤,作函数y=2x的图象.
(4)利用上面的步骤,作函数y=()x的图象.
(5)观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?
(6)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?
(7)把y=2x和y=()x的图象,放在同一坐标系中,你能发现这两个图象的关系吗?
(8)你能证明上述结论吗?
(9)能否用y=2x的图象画y=()x的图象?
请说明画法的理由.
活动:
教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画得好的部分学生的图象,同时投影展示课本表21,22及图2.12,2.13及2.14,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究指数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对指数函数性质的认识,推荐代表发表本组的集体的认识.
讨论结果:
(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质.
(2)一般是列表,描点,连线,借助多媒体手段画出图象,用计算机作函数的图象.
(3)列表.
x
-3.00
-2.50
-2.00
-1.50
-1.00
0.00
0.50
1.00
1.50
2.00
y=2x
1
2
4
作图如图2-1-2-1
图2-1-2-1
(4)列表.
x
-2.50
-2.00
-1.50
-1.00
0.00
1.00
1.50
2.00
2.50
y=()x
1
2
4
作图如图2-1-2-2
图2-1-2-2
(5)通过观察图2121,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x轴上方,说明值域大于0.图象经过点(0,1),且y值分布有以下特点,x<0时0
通过观察图2122,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是下降的,说明是减函数,图象位于x轴上方,说明值域大于0.图象经过点(0,1),x<0时y>1,x>0时0 可以再画下列函数的图象以作比较,y=3x,y=6x,y=()x,y=()x.重新观察函数图象的特点,推广到一般的情形.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 指数函数 及其 性质 章节 练习