SPSS170在生物统计学中的应用实验五方差分析六简单相关与回归分析.docx
- 文档编号:2313430
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:30
- 大小:344.56KB
SPSS170在生物统计学中的应用实验五方差分析六简单相关与回归分析.docx
《SPSS170在生物统计学中的应用实验五方差分析六简单相关与回归分析.docx》由会员分享,可在线阅读,更多相关《SPSS170在生物统计学中的应用实验五方差分析六简单相关与回归分析.docx(30页珍藏版)》请在冰豆网上搜索。
SPSS170在生物统计学中的应用实验五方差分析六简单相关与回归分析
SPSS在生物统计学中的应用
——实验指导手册
实验五:
方差分析
一、实验目标与要求
1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理
2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、实验原理
在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。
例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。
为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:
观测变量、因素和水平。
●观测变量是进行方差分析所研究的对象;
●因素是影响观测变量变化的客观或人为条件;
●因素的不同类别或不通取值则称为因素的不同水平。
在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。
在方差分析中,因素常常是某一个或多个离散型的分类变量。
⏹根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;
⏹根据因素个数,可分为单因素方差分析和多因素方差分析。
在SPSS中,有One-wayANOVA(单变量-单因素方差分析)、GLMUnivariate(单变量多因素方差分析);GLMMultivariate(多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。
本节仅练习最为常用的单变量方差分析。
三、实验演示内容与步骤
㈠单变量-单因素方差分析
单因素方差分析也称一维方差分析,对两组以上的均值加以比较。
检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。
并可以进行两两组间均值的比较,称作组间均值的多重比较。
主要采用One-wayANOVA过程。
采用One-wayANOVA过程要求:
因变量属于正态分布总体,若因变量的分布明显是非正态,应该用非参数分析过程。
若对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用RepeatedMeasure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。
【例6.1】欲比较四种饲料对仔猪增重效果的优劣,随机选取了性别、年龄、体重相同,无亲缘关系的20头猪,随机分为4组,每组5头,分别饲喂一种饲料所得增重数据如下在。
试利用这些数据对4种饲料对仔猪增重效果的差异进行检验。
饲料
日增重(g)
均值
A
57
37
54
42
60
50
B
13
39
41
33
19
29
C
13
15
13
29
20
18
D
18
24
38
22
13
23
合计
600
μ==30
打开数据文件“单因素方差分析数据-1.xls”。
在SPSS中实验该检验的步骤如下:
♦步骤1:
选择菜单【分析】→【比较均值】→【单因素方差分析】,依次将观测变量销量移入因变量列表框,将因素变量地区移入因子列表框。
图5.1One-WayANOVA对话框
♦单击两两比较按钮,如图5.2,该对话框用于进行多重比较检验,即各因素水平下观测变量均值的两两比较。
方差分析的原假设是各个因素水平下的观测变量均值都相等,备择假设是各均值不完全相等。
假如一次方差分析的结果是拒绝原假设,我们只能判断各观测变量均值不完全相等,却不能得出各均值完全不相等的结论。
各因素水平下观测变量均值的更为细致的比较就需要用多重比较检验。
图5.2两两比较对话框
假定方差齐性选项栏中给出了在观测变量满足不同因素水平下的方差齐性条件下的多种检验方法。
✧LSD。
使用t检验执行组均值之间的所有成对比较。
对多个比较的误差率不做调整。
✧Bonferroni。
使用t检验在组均值之间执行成对比较,但通过将每次检验的错误率设置为实验性质的错误率除以检验总数来控制总体误差率。
这样,根据进行多个比较的实情对观察的显著性水平进行调整。
✧Sidak。
基于t统计量的成对多重比较检验。
Sidak调整多重比较的显著性水平,并提供比Bonferroni更严密的边界。
✧Scheffe。
为均值的所有可能的成对组合执行并发的联合成对比较。
使用F取样分布。
可用来检查组均值的所有可能的线性组合,而非仅限于成对组合。
✧R-E-G-WF。
基于F检验的Ryan-Einot-Gabriel-Welsch多步进过程。
✧R-E-G-WQ。
基于学生化范围的Ryan-Einot-Gabriel-Welsch多步进过程。
✧S-N-K.使用学生化的范围分布在均值之间进行所有成对比较。
它还使用步进式过程比较具有相同样本大小的同类子集内的均值对。
均值按从高到低排序,首先检验极端差分。
✧Tukey。
使用学生化的范围统计量进行组间所有成对比较。
将试验误差率设置为所有成对比较的集合的误差率。
✧Tukey'sb。
使用学生化的范围分布在组之间进行成对比较。
临界值是Tukey's真实显著性差异检验的对应值与Student-Newman-Keuls的平均数。
✧Duncan。
使用与Student-Newman-Keuls检验所使用的完全一样的逐步顺序成对比较,但要为检验的集合的错误率设置保护水平,而不是为单个检验的错误率设置保护水平。
使用学生化的范围统计量。
✧Hochberg'sGT2。
使用学生化最大模数的多重比较和范围检验。
与Tukey's真实显著性差异检验相似。
✧Gabriel。
使用学生化最大模数的成对比较检验,并且当单元格大小不相等时,它通常比Hochberg'sGT2更为强大。
当单元大小变化过大时,Gabriel检验可能会变得随意。
✧Waller-Duncan。
基于t统计的多比较检验;使用Bayesian方法。
✧Dunnett。
将一组处理与单个控制均值进行比较的成对多重比较t检验。
最后一类是缺省的控制类别。
另外,您还可以选择第一个类别。
双面检验任何水平(除了控制类别外)的因子的均值是否不等于控制类别的均值。
<控制检验任何水平的因子的均值是否小于控制类别的均值。
>控制检验任何水平的因子的均值是否大于控制类别的均值。
这里选择最常用的LSD检验法、S-N-K检验法、Duncan检验法。
未假定方差齐性选项栏中给出了在观测变量不满足方差齐性条件下的多种检验方法。
✧Tamhane'sT2。
基于t检验的保守成对比较。
当方差不相等时,适合使用此检验。
✧Dunnett'sT3。
基于学生化最大值模数的成对比较检验。
当方差不相等时,适合使用此检验。
✧Games-Howell。
有时会变得随意的成对比较检验。
当方差不相等时,适合使用此检验。
✧Dunnett'sC。
基于学生化范围的成对比较检验。
当方差不相等时,适合使用此检验。
这里选择Tamhane’sT2检验法、Dunnett'sT3检验法。
Significancelevel输入框中用于输入多重比较检验的显示性水平,默认为5%。
♦单击【选项】按钮,弹出options子对话框,如图所示。
在对话框中选中描述性复选框,输出不同因素水平下观测变量的描述统计量;选择方差同质性检验复选框,输出方差齐性检验结果;选中均值图复选框,输出不同因素水平下观测变量的均值直线图。
图5.3“选项”子对话框
✧统计量。
Ø描述性。
计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最小值、最大值和95%置信区间。
Ø固定和随机效果。
显示固定效应模型的标准差、标准误和95%置信区间,以及随机效应模型的标准误、95%置信区间和成分间方差估计。
Ø方差同质性检验。
计算Levene统计量以检验组方差是否相等。
该检验独立于正态的假设。
ØBrown-Forsythe。
计算Brown-Forsythe统计量以检验组均值是否相等。
当方差相等的假设不成立时,这种统计量优于F统计量。
ØWelch。
计算Welch统计量以检验组均值是否相等。
当方差相等的假设不成立时,这种统计量优于F统计量。
✧均值图。
显示一个绘制子组均值的图表(每组的均值由因子变量的值定义)。
✧缺失值。
控制对缺失值的处理。
Ø按分析顺序排除个案。
给定分析中的因变量或因子变量有缺失值的个案不用于该分析。
而且,也不使用超出为因子变量指定的范围的个案。
Ø按列表排除个案。
因子变量有缺失值的个案,或包括在主对话框中的因变量列表上的任何因变量的值缺失的个案都排除在所有分析之外。
如果尚未指定多个因变量,那么这个选项不起作用。
♦在主对话框(单因素方差分析对话框)中点击ok按钮,可以得到单因素分析的结果。
实验结果分析:
表5.1资料描述性统计表
Descriptives
日增重(g)
N
Mean
Std.Deviation
Std.Error
95%ConfidenceIntervalforMean
Minimum
Maximum
LowerBound
UpperBound
1
5
50.00
9.975
4.461
37.61
62.39
37
60
2
5
29.00
12.410
5.550
13.59
44.41
13
41
3
5
18.00
6.782
3.033
9.58
26.42
13
29
4
5
23.00
9.381
4.195
11.35
34.65
13
38
Total
20
30.00
15.424
3.449
22.78
37.22
13
60
表5.2方差齐性检验表
TestofHomogeneityofVariances
TestofHomogeneityofVariances
日增重(g)
LeveneStatistic
df1
df2
Sig.
1.322
3
16
.302
表5.3单因素方差分析结果
ANOVA
日增重(g)
SumofSquares
df
MeanSquare
F
Sig.
BetweenGroups
2970.000
3
990.000
10.219
.001
WithinGroups
1550.000
16
96.875
Total
4520.000
19
表5.4多重比较检验结果-LSD法、Tamhane法、DunnettT3法
MultipleComparisons
DependentVariable:
日增重(g)
(I)饲料
(J)饲料
MeanDifference(I-J)
Std.Error
Sig.
95%ConfidenceInterval
LowerBound
UpperBound
LSD
1
2
21.000*
6.225
.004
7.80
34.20
3
32.000*
6.225
.00
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SPSS170 生物 统计学 中的 应用 实验 方差分析 简单 相关 回归 分析