关于视频监控中使用同轴电缆的传输距离.docx
- 文档编号:2312594
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:4
- 大小:20.51KB
关于视频监控中使用同轴电缆的传输距离.docx
《关于视频监控中使用同轴电缆的传输距离.docx》由会员分享,可在线阅读,更多相关《关于视频监控中使用同轴电缆的传输距离.docx(4页珍藏版)》请在冰豆网上搜索。
关于视频监控中使用同轴电缆的传输距离
关于视频监控中使用同轴电缆的传输距离
500米视频线传输确实是视频信号传输的上限,我们做工程过程中曾经测试过,如果用128编的安防线缆传送视频信号质量基本可以接受,图像衰减程度不是很明显;如果用96编视频线,信号衰减历害,加了信号放大器效果有所改善,但达不到理想状态,除非用市面上较高档的多档数字信号放大器才行。
但这样以来,成本就上升了。
所以最后还是选用128编的线缆来做500米的信号传输。
关于长距离电源,我们选用的是从机房拉220V电源传输至各监控点位,再用12V变压器给摄像机。
成本较代,电源质量也得以保证。
注:
12V电源市面价不到20元一只。
220V电源线与视频线分开走线。
SYV-75-3同轴线缆导体直径为0.51,绝缘外径3.0,200MHZ信号衰减为每米0.28dB,而75-5线缆导线直径为0.75,同样距离衰减为0.16dB,并不是以上的兄弟们说的-3,-5代表距离或者线径,同一种线缆在不同的地方使用,选择不同的设备,就会有不同的传输距离,例如从理论上分析采用SYV-75-3-96编同轴电缆传送视频信号(1.0V-峰-峰值)/75欧时,为了保证信号的传输质量,当传输距离超过180m时,就应该对视频信号进行放大,但实际工程经验表明,最大传输到300m左右仍然能保持良好的显示效果,
一、工程常用同轴电缆类型及性能:
1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。
近些年有人把它称为“视频电缆”;2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。
有人把它称为“射频电缆”;3)基本性能:
*SYV物理结构是100%聚乙烯绝缘;SYWV是发泡率占70-80%的物理发泡聚乙烯绝缘电缆;*由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。
厂家给出的测试数据也说明了这一点;*同轴电缆都可以在直流、射频、微波波段应用。
按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:
似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?
);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些;*高编(128)与低编(64)电缆特性的区别:
eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。
但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。
二、了解同轴电缆的视频传输特性——“衰减频率特性”同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下:
同轴传输特性基本特点:
1.电缆越细,衰减越大:
如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当;2.电缆越长,衰减越大:
如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。
依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了;3.频率失真特性:
低频衰减少,高频衰减大。
高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。
电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题;三、工程应用设计要点网上技术论坛里经常有人问:
75-5电缆能传多远?
回答有300米,500米,600米,还有说1000多米也可以的。
为什么会有这么多答案呢?
原因是没有一个统一的标准。
既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。
1.视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。
视频图像信号是由0-6M不同频率分量组成的。
低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。
显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。
“恢复”不可能是100%,而是允许有一个“失真度”围要求的标准。
这个“标准”的“失真度围”,在图像上用肉眼应该是分辨不出来的。
反过来说,如果在图像上已经能够观察出一点“失真”了,那不管你主观认为图像“还行,可以,不错”甚至“双方认可验收”等等,这时的视频传输质量,都是“不合格的”。
要把工程图像做好,首先就应该选择合格的传输设备,追求视频传输质量符合标准。
这一点,从技术论坛讨论的情况看,还远没引起足够认识。
宏观来看,我国监控行业发展了20多年,工程图像质量不仅没有提高反而有些下降,这不能不引起我们的关注和思考。
2.“视频传输”标准:
由图二可见,对于视频传输,我国广播级视频失真度标准要求如图a):
5M以下幅频特性误差围为±0.75db,即91.7—109%;6M频点为70.7—109%;监控行业的要求略低一些,如图b),0—6M全围为±1.5db,即84—118.8%;这个传输频率特性要求,与一般“3db通频带”的概念一样;这里须强调:
要保证图像质量,视频传输系统(产品)的频率失真围应小于3db;“3db带宽”这个标准,适用于光缆、射频、微波、同轴和双绞线等各种视频传输系统产品;这是为了保证图像质量,对视频传输系统的要求。
但还有一个误区:
在工程中还是有不少人用主观评价“工程图像质量好坏”,甚至于用双方是否认可验收来说明“传输系统(设备)”是否合格,这就有些本末倒置了。
工程商这么做可能是“糊涂”;传输设备厂家如果这么做,那可就是“蒙人”了,如果再利用媒体这么宣传,那就是诚心“误导”了。
3..摄像机信号不加放大补偿,只用同轴电缆传输时,按照“3db带宽”这个标准要求,并结合上面的电缆衰减特性,75-5电缆,不超过3db失真度的电缆长度计算方法是:
1000米20db,20/3=6.67,1000/6.67=150米,75-7电缆为236米。
不同厂家不同批次的电缆特性有一定差别,实际工程设计中,参照这个数据设计和施工,图像质量一般会有保证的。
(准确计算应按照“边频差值”计算,上面计算忽略了低频衰减——原作注)4.实心聚乙烯绝缘电缆,衰减量大于物理发泡电缆。
所以3db带宽有效传输距离少于上面计算值,工程上大致可按90%左右估算。
如实芯75-5电缆“3db带宽”传输距离大约为150*0.9=135米;5.高编电缆:
尽管200k以下的衰减小于低编电缆,但200-300k以上的传输衰减与低编电缆一样,所以3db带宽传输距离,反而低于上述计算值,这是由于高编电缆的“边频差值”更大的因素造成的,“边频差值”越大,放大补偿的难度越大;6.同轴电缆加放大补偿的视频传输方式:
这时系统传输特性是同轴电缆的衰减频率特性和放大补偿的“增益频率特性”之和,放大补偿的“增益频率特性”,应该能有效补偿电缆的频率衰减特性,且二者应该始终保持相反、互补关系,这才可以有效扩展同轴电缆的传输距离。
目前这项同轴视频传输技术,产品已经达到的技术水平是:
只用一级末端补偿(无前端无中继),75-5电缆在2km,75-7电缆在3km围以的任意距离上,都可以实现上述传输标准;传输距离和传输质量已经和多模光端机相当,而在传输成本、施工维护和图像质量可控恢复功能方面,都具有独特的实用优势和竞争优势;这就是说,同轴视频传输技术,以将有效监控围扩展到了2-3公里,且是我国自有知识产权技术。
7.工程中确有不少工程是按照“只要图像质量双方认可验收”就是“硬道理”的做法,这实际是无标准可言,不属本文讨论围。
四、同轴电缆的抗干扰性能[工程经验]:
一路本来没有干扰的图像,运行中偶然出现了干扰,经检查是BNC电缆头接地不良引起的。
重新焊好后,干扰消失了,图像恢复正常。
这说明什么问题呢?
一是说明周围环境确有外界电磁干扰存在,二是说明在正常情况下,同轴电缆可以把这类干扰屏蔽掉,三是说明BNC电缆头接地不良,破坏了电缆的屏蔽性能,使原来已经被屏蔽掉的干扰,在新的条件下又显现出来了。
这就是我们探讨干扰产生原理的启发点。
对于干扰的探讨,eie实验室的研究成果表明:
1.同轴干扰形成原理:
就像天线接收电磁波原理一样,电缆外部客观存在的交变电磁场,可以在电缆外导体上产生干扰感应电流——干扰感应电流在电缆“纵向电阻(阻抗)”Rd上,会形成干扰感应电动势(电压)Vi——干扰感应电动势刚好串联在视频信号传输回路里,与视频信号一起加到末端负载Rh上,形成了干扰。
这就是同轴干扰形成原理。
2.显然:
当电缆外导体电阻很小,或当外界电磁干扰不是很强,感应电流很小,感应电动势也就很小,而且远远小于视频信号,这时就可以认为“没有干扰”。
这就是同轴电缆屏蔽干扰的作用;3.在上面工程经验中,当BNC头没有焊接好、接触不良、编织层在穿管时被拉断、或在电梯随行电缆中,长时间反复弯曲加上垂直重力作用编织层被逐步拉断时,都会造成外导体电阻增加,导致“干扰感应电压”升高,视频信号传输效率(分压比例)降低,使原来没有显现出来的“干扰”也出现了;4.工程中的“地电位”干扰也是通过同轴电缆外导体电阻才起作用的,所以单端接地可有效排除;5.四屏蔽高编(128)电缆外导体电阻比低编电缆小,所以形成的干扰感应电动势也要低一些,这种“低一些”的效果,只是对低频干扰而言的(欧姆电阻为主)。
对于高频干扰,由于趋肤效应,高、低编电缆的表面阻抗基本一样,所以对高频的抗干扰效果区别不大;需要明确的是:
与低编电缆比较,四屏蔽高编(128)电缆这种能够“适当减弱”低频干扰的效果,其减弱程度是与两种电缆外导体电阻成反比关系;工程上值得认真考虑的是这点减弱干扰的效果,与高编电缆的高投入成本是否值得?
五、视频传输中的抗干扰措施工程中产生干扰的情况很多很复杂,但可以大致分为两大类:
一类是电缆传输线路“外部电磁干扰”的入侵,如地电位干扰、电台干扰、电火花干扰、并行电缆耦合干扰等。
这是影响最大、设计和施工中又很难预测的干扰。
第二类是两端设备问题和故障引入的干扰,如设备电源故障引来的50/100周电源干扰,或开关电源的高频电源干扰等,不妨把这一类叫着“部干扰”,这部分比较好解决。
我们主要谈第一类的外部干扰。
工程中比较成熟的经验有:
1.防止“地电位”的单端接地或不接;2.电缆穿金属管,或走金属线槽;此法十分有效,但成本较高,施工有一定复杂度;3.埋地;4.“远离”其他动力电缆或信号控制电缆,并尽量避免或减少并行;5.集中供电和控制信号传输采用屏蔽电缆,但屏蔽层不能两端都接视频地;6.施工穿管时,把“布线这种粗活”在当地雇临时工来做,结果多处拉断同轴电缆编织网,使外导体电阻增大,产生干扰,这种情况十分多。
但这属于可以避免,发生概率又最高的“人为因素”。
7.电缆中间接头连接方法,不是采用F型接头和双通连接,而是采用“焊接”或“扭接”的方法,这就破坏了电缆的同轴性和特性阻抗的连续性,容易引起反射和干扰。
这属于经验不足的人为因素;8.采用抗干扰器,用平衡抵销原理抗干扰。
但局限性较大,现场调试交麻烦;六、同轴抗干扰技术新进展——抗干扰同轴电缆在外部强干扰源仍然存在的情况下,为什么电缆穿金属管,或走金属线槽后,就可以有效抗干扰呢?
正确的回答也应该是“屏蔽的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关于 视频 监控 使用 同轴电缆 传输 距离