数学建模综合评价方法定.docx
- 文档编号:2307211
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:13
- 大小:282.82KB
数学建模综合评价方法定.docx
《数学建模综合评价方法定.docx》由会员分享,可在线阅读,更多相关《数学建模综合评价方法定.docx(13页珍藏版)》请在冰豆网上搜索。
数学建模综合评价方法定
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任—个指标都反映和刻画事物的—个侧面.
从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值.例如,旅游景区质量等级有、、、和之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.
从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:
(1)极大型指标(又称为效益型指标)是指标值越大越好的指标;
(2)极小型指标(又称为成本型指标)是指标值越小越好的指标;
(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;
(4)区间型指标是指标值取在某个区间为最好的指标.
例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化围一般是×标的价,超过此围的都将被淘汰,因此投标报价为区间型指标.投标工期既不能太长又不能太短,就是居中型指标.
在实际中,不论按什么式对指标进行分类,不同类型的指标可以通过相应的数学法进行相互转换
8.2.4评价指标的预处理法
一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.
1.指标的一致化处理
所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同的指标权重确定法和评价模型中,指标一致化处理也有差异.
(1)极小型指标化为极大型指标
对极小型指标,将其转化为极大型指标时,只需对指标取倒数:
,
或做平移变换:
,
其中,即n个评价对象第j项指标值最大者.
(2)居中型指标化为极大型指标
对居中型指标,令,,取
就可以将转化为极大型指标.
(3)区间型指标化为极大型指标
对区间型指标,是取值介于区间时为最好,指标值离该区间越远就越差.令,,取
就可以将区间型指标转化为极大型指标.
类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.
2.指标的无量纲化处理
所谓无量纲化,也称为指标的规化,是通过数学变换来消除原始指标的单位及其数值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.
对于个评价对象,每个评价对象有个指标,其观测值分别为
.
(1)标准样本变换法
令
其中样本均值,样本均差,称为标准观测值.
特点:
样本均值为,差为;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定()的情况不适用;对于要求指标评价值的评价法(如熵值法、几加权平均法等)不适用.
(2)线性比例变换法
对于极大型指标,令
对极小型指标,令
或
该法的优点是这些变换式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的和不一定同时出现.
特点:
当时,;计算简便,并保留了相对排序关系.
(3)向量归一化法
对于极大型指标,令
对于极小型指标,令
优点:
当时,,即.该法使,且变换前后正逆向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.
(4)极差变换法
对于极大型指标,令
对于极小型指标,令
其优点为经过极差变换后,均有,且最优指标值,最劣指标值.该法的缺点是变换前后的各指标值不成比例,对于指标值恒定()的情况不适用.
(5)功效系数法
令
其中均为确定的常数.表示“平移量”,表示指标实际基础值,表示“旋转量”,即表示“放大”或“缩小”倍数,则.
通常取,即
则实际基础值为,最大值为,即.
特点:
该法可以看成更普遍意义下的一种极值处理法,取值围确定,最小值为,最大值为.
3.定性指标的定量化
在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:
质量很好、性能一般、可靠性高、态度恶劣等.对于这些指标,在进行综合评价时,必须先通过适当的式进行赋值,使其量化.一般来说,对于指标最优值可赋值,对于指标最劣值可赋值为.对极大型和极小型定性指标常按以下式赋值.
(1)极大型定性指标量化法
对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-2所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.
图8-2极大型定性指标量化法
(2)极小型定性指标量化法
对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.
模糊综合评价法
在客观世界中,存在着多不确定性现象,这种不确定性有两大类:
一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种在结构的不确定属性,称为模糊性现象.
模糊数学就是用数学法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种法.
.隶属度函数的确定法
隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的法.
⑴模糊统计法
模糊统计法是利用概率统计思想确定隶属度函数的一种客观法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.
①以年龄为论域,在论域中取一固定样本点.
②设为论域上随机变动的普通集合,是青年人在上以为弹性边界的模糊集,对的变动具有制约作用.其中,或,使得对的隶属关系具有不确定性.然后进行模糊统计试验,若次试验中覆盖的次数为,则称为对于的隶属频率.由于当试验次数不断增大时,隶属频率趋于某一确定的常数,该常数就是属于的隶属度,即
比如在论域中取,选择若干合适人选,请他们写出各自认为青年人最适宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若次试验中覆盖27岁的年龄区间的次数为,则称为27岁对于青年人的隶属频率,表8-4是抽样调查统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到属于模糊集的隶属度.
表8-427岁对青年人的隶属频率
试验次数
10
20
30
40
50
60
70
80
90
100
110
120
129
隶属次数
6
14
23
31
39
47
53
62
68
76
85
95
101
隶属频率
0.60
0.70
0.77
0.78
0.78
0.76
0.76
0.78
0.76
0.76
0.75
0.79
0.78
③在论域中适当的取若干个样本点,分别确定出其隶属度,建立适当坐标系,描点连线即可得到模糊集的隶属函数曲线.
将论域分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到青年人的隶属函数曲线,见表8-5与图8-5所示.
确定模糊集合隶属函数的模糊统计法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.
表8-5分组计算隶属频率(试验次数129)
分组
频数
隶属频率
分组
频数
隶属频率
13.5~14.5
2
0.016
25.5~26.5
103
0.798
14.5~15.5
27
0.210
26.5~27.5
101
0.783
15.5~16.5
51
0.395
27.5~28.5
99
0.767
16.5~17.5
67
0.519
28.5~29.5
80
0.620
17.5~18.5
124
0.961
29.5~30.5
77
0.597
18.5~19.5
125
1.00
30.5~31.5
27
0.209
19.5~20.5
129
1.00
31.5~32.5
27
0.209
20.5~21.5
129
1.00
32.5~33.5
26
0.202
21.5~22.5
129
1.00
33.5~34.5
26
0.202
22.5~23.5
129
1.00
34.5~35.5
26
0.202
23.5~24.5
129
1.00
35.5~36.5
1
0.008
24.5~25.5
128
0.992
⑵三分法
三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观法.例如建立矮个子,中等个子,高个子三个模糊概念的隶属函数.设
,
论域为身高的集合,取(单位:
m).每次模糊试验确定的一次划分,每次划分确定一对数,其中为矮个子与中等个子的分界点,为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:
即将看作二维随机变量,进行抽样调查,求得、的概率分布、后,再分别导出、和的隶属函数、和,相应的示意图如图8-6所示.
通常和分别服从正态分布和,则、和的隶属函数分别为
其中
⑶模糊分布法
根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.
在客观事物中,最常见的是以实数集作论域的情形.若模糊集定义在实数域上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.
为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致向.
偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一的模糊现象,其隶属函数的一般形式为
偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一的模糊现象,其隶属函数的一般形式为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 综合 评价 方法