基于单片机的交通控制系统2docdeflate.docx
- 文档编号:23053261
- 上传时间:2023-04-30
- 格式:DOCX
- 页数:24
- 大小:85.63KB
基于单片机的交通控制系统2docdeflate.docx
《基于单片机的交通控制系统2docdeflate.docx》由会员分享,可在线阅读,更多相关《基于单片机的交通控制系统2docdeflate.docx(24页珍藏版)》请在冰豆网上搜索。
基于单片机的交通控制系统2docdeflate
河南科技大学
课程设计说明书
(机电一体化工程)
地市:
三门峡市
准考证号:
120110100388
姓名:
朱丽平
河南省高等教育自学测试
高等教育自学测试
课程设计任务书
一、课程设计题目基于单片机的交通控制系统
二、课程设计工作自2011年2月5日起至2011年4月25日止
三、课程设计进行地点三门峡职业技术学院
四、课程设计内容要求
(1)制图符合标准
(2)方案设计合理有可行性(3)理论分析完整清楚(4)设计简明扼要
指导教师:
王素粉
批准日期:
2011年5月14日
第1章前言……………………………………………………………………4
第2章单片机概述…………………………………………………………………4
第3章交通灯的基本原理……………………………………………………5
3.1十字路口示意图…………………………………………………………………5
3.2十字路口交通灯指示灯示意图…………………………………………………5
3.3十字路口通行顺序………………………………………………………………6
3.4交通灯闪亮的过程…………………………………………………6
第4章芯片的选择和简介……………………………………………………………7
4.1MSC-51芯片简介………………………………………………………………7
4.1.1MCS-51单片机内部结构………………………………………………7
4.1.2中央处理器……………………………………………………………7
4.1.3数据存储器……………………………………………………………7
4.1.4程序存储器……………………………………………………………7
4.1.5定时/计数器…………………………………………………………7
4.1.6并行输入输出…………………………………………………………7
4.1.7全双工串行口……………………………………………………………7
4.2中断系统…………………………………………………………………………8
4.3时钟电路…………………………………………………………………………8
4.48255芯片简介……………………………………………………………………9
第5章控制器硬件系统设计…………………………………………………………11
5.1交通管理的方案论证……………………………………………………………11
5.2系统硬件设计……………………………………………………………………12
5.2.1交通灯控制线路图………………………………………………………12
5.2.2系统工作原理……………………………………………………………12
第6章控制器的软件设计………………………………………………………13
6.1每秒钟的设定…………………………………………………………13
6.2计数器硬件延时…………………………………………………………13
6.2.1计数器初值计算…………………………………………………13
6.2.21秒的方法………………………………………………………13
6.3软件延时………………………………………………………………15
6.4时间及信号灯的显示……………………………………………………15
6.4.18031并行口的扩展………………………………………………15
6.4.2显示原理…………………………………………………………16
6.4.38255输出信号的放大……………………………………………16
6.4.48255输出信号和信号灯的连接…………………………………16
6.4.58255和8031的连接………………………………………………16
6.5程序设计………………………………………………………………17
第1章前言
当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。
但这一技术在19世纪就已出现了。
1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。
这是世界上最早的交通信号灯。
1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。
它由红绿两以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。
1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。
电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成,1914年始安装于纽约市5号大街的一座高塔上。
红灯亮表示“停止”,绿灯亮表示“通行”。
1918年,又出现了带控制的红绿灯和红外线红绿灯。
带控制的红绿灯,一种是把压力探测器安在地下,车辆一接近红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下嗽叭,就使红灯变为绿灯。
红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。
红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。
信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。
绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。
左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。
红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。
黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。
第2章单片机概述
单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。
单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:
中央处理器、存储器和I/O接口电路等。
因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
单片机经过1、2、3、3代的发展,目前单片机正朝着高性能和多品种方向发展,它们的CPU功能在增强,内部资源在增多,引角的多功能化,以及低电压底功耗。
第3章、交通灯的基本原理
3.1十字路口示意图
分别用1、2、3、4表明四个流向的主车道,用A、B、C、P分别表示各主车道的左行车道、直行车道、右行车道以及人行道。
用a、b、c、p分别表示左转、直行、右转和人行道的交通信号灯,如图2所示。
图3-1十字路口交通示意图
图3-1
3.2十字路口交通指示灯示意图
用a、b、c、p分别表示左转、直行、右转和人行道的交通信号灯,如图1-2
图1-2十字路口交通指示灯示意图
3.3十字路口通行顺序
十字
图3-3
3.4交通灯闪亮的过程:
路口1的车直行时的所有指示灯情况为:
3a3b2p绿3c红+4a4b4c3p全红+1c绿1a1b4p红+2c绿2a2b1p红
路口2的车直行时的所有指示灯情况为:
4a4b3p绿4c红+1a1b1c4p全红+2c绿2a2b1p红+3c绿3a3b2p红
故路口3的车直行时的所有指示灯情况为:
1a1b4p绿1c红+2a2b2c1p全红+3c绿3a3b2p红+4c绿4a4b3p红
故路口4的车直行时的所有指示灯情况为:
2a2b1p绿2c红+3c3a3b2p全红+4c绿4a4b3p红+1c绿1a1b4p红
4、芯片的选择和简介
4.1MSC-51芯片简介
4.1.1MCS-51单片机内部结构
8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。
8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线。
4.1.2中央处理器:
中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。
4.1.3数据存储器(RAM)
8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。
4.1.4程序存储器(ROM):
8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。
4.1.5定时/计数器(ROM):
8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。
4.1.6并行输入输出(I/O)口:
8051共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。
4.1.7全双工串行口:
8051内置一个全双工串行通信口,用于和其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。
4.2中断系统:
8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。
4.3时钟电路:
8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051单片机需外置振荡电容。
单片机的结构有两种类型,一种是程序存储器和数据存储器分开的形式,即哈佛(Harvard)结构,另一种是采用通用计算机广泛使用的程序存储器和数据存储器合二为一的结构,即普林斯顿(Princeton)结构。
INTEL的MCS-51系列单片机采用的是哈佛结构的形式。
下图是MCS-51系列单片机的内部结构示意图4-2。
4.3.1MCS-51的引脚说明:
MCS-51系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线和P3口线复用。
现在我们对这些引脚的功能加以说明:
图4-3
Pin9:
RESET/Vpd复位信号复用脚,当8051通电,时钟电路开始工作,在RESET引脚上出现24个时钟周期以上的高电平,系统即初始复位。
初始化后,程序计数器PC指向0000H,P0-P3输出口全部为高电平,堆栈指针写入07H,其它专用寄存器被清“0”。
RESET由高电平下降为低电平后,系统即从0000H地址开始执行程序。
然而,初始复位不改变RAM(包括工作寄存器R0-R7)的状态,8051的初始态。
8051的复位方式可以是自动复位,也可以是手动复位,。
此外,RESET/Vpd还是一复用脚,Vcc掉电其间,此脚可接上备用电源,以保证单片机内部RAM的数据不丢失。
•Pin29:
当访问外部程序存储器时,此脚输出负脉冲选通信号,PC的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU读入并执行。
·Pin30:
ALE/当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。
而访问内部程序存储器时,ALE端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。
更有一个特点,当访问外部程序存储器,ALE会跳过一个脉冲。
如果单片机是EPROM,在编程其间,将用于输入编程脉冲。
·Pin29:
当访问外部程序存储器时,此脚输出负脉冲选通信号,PC的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU读入并执行。
·Pin31:
EA/Vpp程序存储器的内外部选通线,8051和8751单片机,内置有4kB的程序存储器,当EA为高电平并且程序地址小于4kB时,读取内部程序存储器指令数据,而超过4kB地址则读取外部指令数据。
如EA为低电平,则不管地址大小,一律读取外部程序存储器指令。
显然,对内部无程序存储器的8031,EA端必须接地。
在编程时,EA/Vpp脚还需加上21V的编程电压。
4.4 8255芯片简介
8255可编程并行接口芯片简介:
8255可编程并行接口芯片有三个输入输出端口,即A口、B口和C口,对应于引脚PA7~PA0、PB7~PB0和PC7~PC0。
其内部还有一个控制寄存器,即控制口。
通常A口、B口作为输入输出的数据端口。
C口作为控制或状态信息的端口,它在方式字的控制下,可以分成4位的端口,每个端口包含一个4位锁存器。
它们分别和端口A/B配合使用,可以用作控制信号输出或作为状态信号输入。
8255可编程并行接口芯片方式控制字格式说明:
8255有两种控制命令字;一个是方式选择控制字;另一个是C口按位置位/复位控制字。
其中C口按位置位/复位控制字方式使用较为繁难,说明也较冗长,故在此不作叙述,需要时用户可自行查找有关资料。
方式控制字格式说明如表2-1:
表2-1
D7
D6
D5
D4
D3
D2
D1
D0
D7:
设定工作方式标志,1有效。
D6、D5:
A口方式选择
00—方式0
01—方式1
1×—方式2
D4:
A口功能 (1=输入,0=输出)
D3:
C口高4位功能(1=输入,0=输出)
D2:
B口方式选择 (0=方式0,1=方式1)
D1:
B口功能 (1=输入,0=输出)
D0:
C口低4位功能(1=输入,0=输出)
8255可编程并行接口芯片工作方式说明:
方式0:
基本输入/输出方式。
适用于三个端口中的任何一个。
每一个端口都可以用作输入或输出。
输出可被锁存,输入不能锁存。
方式1:
选通输入/输出方式。
这时A口或B口的8位外设线用作输入或输出,C口的4条线中三条用作数据传输的联络信号和中断请求信号。
方式2:
双向总线方式。
只有A口具备双向总线方式,8位外设线用作输入或输出,此时C口的5条线用作通讯联络信号和中断请求信号
第5章控制器硬件系统设计
5.1交通管理的方案论证
A、B两干道交于一个十字路口,各干道有一组红、黄、绿三色的指示灯,指挥车辆和行人安全通行。
红灯亮禁止通行,绿灯亮允许通行。
黄灯亮提示人们注意红、绿灯的状态即将切换,且黄灯燃亮时间为A、B两干道的公共停车时间。
设A道比B道的车流量大,指示
灯燃亮的方案如表5-1。
3
60
3
80
3
60
……
A道
黄灯亮
红灯亮
黄灯亮
绿灯亮
黄灯亮
红灯亮
……
B道
黄灯亮
绿灯亮
黄灯亮
红灯亮
黄灯亮
绿灯亮
……
表5-1
此表5-1说明:
(1)当为黄灯时A、B两道同时为黄灯;以提示行人或车辆下一个灯色即将到来 时间3秒。
(2)当A到为红灯,A道车辆禁止通行,A道行人可通过;B道为绿灯,B道车辆通过,行人禁止通行。
时间为60秒。
(3)当A道绿灯,A道车辆通行;B道为红灯,B道车辆禁止通过,行人通行。
时间为80秒。
A道车流大通行时间长
(4)这样如上表的时间和红、绿、黄出现的顺序依次出现这样行人和车辆就能安全畅通的通行。
(5)此表可根据车流量动态设定
5.2系统硬件设计
选用设备8031单片机一片选用设备:
8031弹片机一片,8255并行通用接口芯片一片,74LS07两片,共阴极的七段数码管两个双向晶闸管若干,7805三端稳压电源一个,红、黄、绿交通灯各两个,开关键盘、连线若干。
5.2.1交通灯控制线路图
5.2.2系统工作原理
(1)开关键盘输入交通灯初始时间,通过8031单片机P1输入到系统
(2)由8031单片机的定时器每秒钟通过P0口向8255的数据口送信息,由8255的PC口显示红、绿、黄灯的燃亮情况;由8255的PA、PB口显示每个灯的燃亮时间。
(3)8031通过 设置各个信号等的燃亮时间、通过8031设置,黄、绿、红时间依次为3秒、60秒、3秒、80秒、3秒循环由8031的P0口向8255的数据口输出。
(4)通过8031单片机的P3.0位来控制系统是工作或设置初值,当.牌位0就对系统进行初始化,为1系统就开始工作。
(5)红灯倒计时时间,当有车辆闯红灯时,启动蜂鸣器进行报警,3S后然后恢复正常。
(6)增加每次绿灯时间车流量检测的功能,并且通过查询P2.0端口的电平是否为低,开关按下为低电平,双位数码管显示车流量,直到下一次绿灯时间重新记入。
(7)绿灯时间倒计时完毕,重新循环。
(8)8255PA口用于输出时间的个位,PB口用于输出时间的十位,由747S07驱动芯片驱动;.而PC口用于输出各个灯的情况,它的末段连接双向晶闸管采用220V交流电压驱动。
第6章控制器的软件设计
6.1每秒钟的设定
延时方法可以有两种一中是利用MCS-51内部定时器才生溢出中断来确定1秒的时间,另一种是采用软延时的方法。
6.2计数器硬件延时
6.2.1计数器初值计算
定时器工作时必须给计数器送计数器初值,这个值是送到TH和TL中的。
他是以加法记数的,并能从全1到全0时自动产生溢出中断请求。
因此,我们可以把计数器记满为零所需的计数值设定为C和计数初值设定为TC可得到如下计算通式:
TC=M-C (公式4-1)
式中,M为计数器摸值,该值和计数器工作方式有关。
在方式0时M为213;在方式1时M的值为216;在方式2和3为28
计算公式
T=(M-TC)T (公式4-2)
或TC=M-T/T (公式4-3)
T计数是单片机时钟周期TCLK的12倍;TC为定时初值
如单片机的主脉冲频率为TCLK12MHZ ,经过12分频
方式0 TMAX=213 *1微秒=8.192毫秒
方式1 TMAX=216 *1微秒=65.536毫秒
显然1秒钟已经超过了计数器的最大定时间,所以我们只有采用定时器和软件相结合的办法才能解决这个问题.
6.2.2 1秒的方法
我们采用在主程序中设定一个初值为20的软件计数器和使T0定时50毫秒.这样每当T0到50毫秒时CPU就响应它的溢出中断请求,进入他的中断服务子程序。
在中断服务子程序中,CPU先使软件计数器减1,然后判断它是否为零。
为零表示1秒已到可以返回到输出时间显示程序。
相应程序代码
(1)主程序
定时器需定时50毫秒,故T0工作于方式1。
初值:
TC=M-T/T计数 =216 -50ms/1us=15536=3CBOH
ORG1000H
START:
MOV TMOD, #01H ;令TO为定时器方式1
MOV TH0, #3CH ;装入定时器初值
MOV TL0, #BOH ;
MOV IE, #82H ;开T0中断
SEBT TRO ;启动T0计数器
MOV RO, #14H ;软件计数器赋初值
LOOP:
SJMP $ ;等待中断
(2)中断服务子程序
ORG 000BH
AJMP BRT0
ORG 00BH
BRTO:
DJNZR0,NEXT
AJMP TIME ; 跳转到时间及信号灯显示子程序
DJNZ:
MOV RO,#14H ;恢复R0值
MOV TH0, #3CH ;重装入定时器初值
MOV TL0, #BOH ;
MOV IE, #82H
RET1
END
6.3软件延时
MCS-51的工作频率为2-12MHZ,我们选用的8031单片机的工作频率为6MHZ。
机器周期和主频有关,机器周期是主频的12倍,所以一个机器周期的时间为12*(1/6M)=2us。
我们可以知道具体每条指令的周期数,这样我们就可以通过指令的执行条数来确定1秒的时间。
DELAY:
MOVR4,#08H 延时1秒子程序
DE2:
LCALLDELAY1
DJNZR4,DE2
RET
DELAY1:
MOVR6,#0 延时125ms子程序
MOVR5,#0
DE1:
DJNZR5,$
DJNZR6,DE1 RET
MOVRN,#DATA 字节数数为2 机器周期数为1
所以此指令的执行时间为2ms
DELAY1为一个双重循坏循环次数为256*256=65536所以延时时间=65536*2=131072us约为125us
DELAY R4设置的初值为8 主延时程序循环8次,所以125us*8=1秒
由于单片机的运行速度很快其他的指令执行时间可以忽略不计。
6.4时间及信号灯的显示
6.4.1 8031并行口的扩展
8031虽然有4个8位I/O端口,但真正能提供借用的只有P1口,因为P2和P0口通常用于传送外部传送地址和数据,P3口也有它的第二功能。
因此,8031通常需要扩展。
由于我们用外输出时间时,时间的个位、十位、信号灯的显示都要用到一个I/O端口,显然8031的端口是不够,需要扩展。
扩展的方法有两种:
(1)借用外部RAM地址来扩展I/O端口;
(2)采用I/O接口新片来扩充。
, 我们用8255并行接口信片来扩展I/O端口。
6.4.2显示原理:
当定时器定时为1秒,时程序跳转到时间显示及信号灯显示子程序,它将依次显示信号灯时间,同时一直显示信号灯的颜色,这时在返回定时子程序定时一秒,在显示黄灯的下一个时间,这样依次把所有的灯色的时间显示完后在重新给时间计数器赋初值,重新进入循环。
6.4.3 8255输出信号的放大:
要使行人能看见信号灯的情况,必须把8255输出的信号进行放大,这里我们用VT为双向晶闸管,当门极为高电平时晶闸管导通,该支路指示灯亮;当门极为低电平时关断,该支路指示灯灭。
我们用连接7段数码管的方法来连接晶闸管
6.4.48255输出信号和信号灯的连接:
LED灯的显示原理:
通过同名管脚上所加电平的高低来控制发光二极管是否点量而显示不同的字形如SP,g,f,e,d,c,b,a管角上加上7FH所以 SP上为0伏,不亮其余为TTL高电平,全亮则显示为8
采用共阴级连接:
其中 PA0\PB0-a,
PA1\PB1-b,
PA2\PB2-c,
PA3\PB3-d,
PA4\PB4-e,
PA5\PB5-f,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 交通 控制系统 docdeflate