电容工作原理及作用Word文档下载推荐.docx
- 文档编号:22979396
- 上传时间:2023-02-06
- 格式:DOCX
- 页数:15
- 大小:51.93KB
电容工作原理及作用Word文档下载推荐.docx
《电容工作原理及作用Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《电容工作原理及作用Word文档下载推荐.docx(15页珍藏版)》请在冰豆网上搜索。
但实际上超过1μF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。
有时会看到有一个电容量较大电解电容并联了一个小电
容,这时大电容通低频,小电容通高频。
电容的作用就是通高阻低,通高频阻低频。
电容越大低频越容易通过,电容越大高频越容易通过。
具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。
曾有网友形象地将滤波电容比作“水塘”。
由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。
它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。
滤波就是充电,放电的过程。
想从事开关电源设计吗?
,QQ:
2621825447
4)储能
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。
电压额定值为40~450VDC、电容值在220~150000μF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。
根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。
2、应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:
1)耦合
举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号
较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
2)振荡/同步
包括RC、LC振荡器及晶体的负载电容都属于这一范畴。
3)时间常数
这就是常见的R、C串联构成的积分电路。
当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。
而其充电电流则随着电压的上升而减小。
电流通过电阻(R)、电容(C)的特性通过下面的公式描述:
i=(V/R)e-(t/CR)
话说电容之二:
电容的选择
通常,应该如何为我们的电路选择一颗合适的电容呢?
笔者认为,应基于以
下几点考虑:
1、静电容量;
2、额定耐压;
3、容值误差;
4、直流偏压下的电容变化量;
5、噪声等级;
6、电容的类型;
7、电容的规格。
那么,是否有捷径可寻呢?
其实,电容作为器件的外围元件,几乎每个器件的Datasheet或者Solutions,都比较明确地指明了外围元件的选择参数,也就是说,据此可以获得基本的器件选择要求,然后再进一步完善细化之。
其实选用电容时不仅仅是只看容量和封装,具体要看产品所使用环境,特殊的电路必须用特殊的电容。
下面是chipcapacitor根据电介质的介电常数分类,介电常数直接影响电
路的稳定性。
NP0orCH(K<
150):
电气性能最稳定,基本上不随温度﹑电压与时间的改变而改变,适用于对稳定性要求高的高频电路。
鉴于K值较小,所以在0402、0603、0805封装下很难有大容量的电容。
如0603一般最大的10nF以下。
X7RorYB(2000<
K<
4000):
电气性能较稳定,在温度﹑电压与时间改变时性能的变化并不显著(?
C<
±
10%)。
适用于隔直、偶合、旁路与对容量稳定性要求不太高的全频鉴电路。
Y5VorYF(K>
15000):
容量稳定性较X7R差(?
+20%~-80%),容量﹑损耗对温度、电压等测试条件较敏感,但由于其K值较大,所以适用于一些容值要求较高的场合。
电容的分类
电容的分类方式及种类很多,基于电容的材料特性,其可分为以下几大类:
1、铝电解电容
电容容量范围为0.1μF~22000μF,高脉动电流、长寿命、大容量的不二之选,广泛应用于电源滤波、解藕等场合。
2、薄膜电容
电容容量范围为0.1pF~10μF,具有较小公差、较高容量稳定性及极低的压电效应,因此是X、Y安全电容、EMI/EMC的首选。
3、钽电容
电容容量范围为2.2μF~560μF,低等效串联电阻(ESR)、低等效串联电感(ESL)。
脉动吸收、瞬态响应及噪声抑制都优于铝电解电容,是高稳定电源的理想选择。
4、陶瓷电容
电容容量范围为0.5pF~100μF,独特的材料和薄膜技术的结晶,迎合了当今“更轻、更薄、更节能“的设计理念。
5、超级电容
电容容量范围为0.022F~70F,极高的容值,因此又称做“金电容”或者“法拉电容”。
主要特点是:
超高容值、良好的充/放电特性,适合于电能存储和电源备份。
缺点是耐压较低,工作温度范围较窄。
6、多层陶瓷电容(MLCC)
对于电容而言,小型化和高容量是永恒不变的发展趋势。
其中,要数多层陶瓷电容(MLCC)的发展最快。
多层陶瓷电容在便携产品中广泛应用极为广泛,但近年来数字产品的技术进步对其提出了新要求。
例如,手机要求更高的传输速率和更高的性能;
基带处理器要求高速度、低电压;
LCD模块要求低厚度(0.5mm)、大容量电容。
而汽车环境的苛刻性对多层陶瓷电容更有特殊的要求:
首先是耐高温,放置于其中的多层陶瓷电容必须能满足150℃的工作温度;
其次是在电池电路上需要短路失效保护设计。
也就是说,小型化、高速度和高性能、耐高温条件、高可靠性已成为陶瓷电容的关键特性。
陶瓷电容的容量随直流偏置电压的变化而变化。
直流偏置电压降低了介电常数,因此需要从材料方面,降低介电常数对电压的依赖,优化直流偏置电压特性。
应用中较为常见的是X7R(X5R)类多层陶瓷电容,它的容量主要集中在1000pF以上,该类电容器主要性能指标是等效串联电阻(ESR),在高波纹电流的电源去耦、滤波及低频信号耦合电路的低功耗表现比较突出。
另一类多层陶瓷电容是C0G类,它的容量多在1000pF以下,该类电容器主要性能指标是损耗角正切值tgδ(DF)。
传统的贵金属电极(NME)的C0G产品DF值范围是(2.0~8.0)×
10-4,而技术创新型贱金属电极(BME)的C0G产品DF值范围为(1.0~2.5)×
10-4,约是前者的31~50%。
该类产品在载有T/R模块电路的GSM、CDMA、无绳电话、蓝牙、GPS系统中低功耗特性较为显著。
较多用于各种高频电路,如振荡/同步器、定时器电路等。
7、钽电容替代电解电容的误区
通常的看法是钽电容性能比铝电容好,因为钽电容的介质为阳极氧化后生成的五氧化二钽,它的介电能力(通常用ε表示)比铝电容的三氧化二铝介质要高。
因此在同样容量的情况下,钽电容的体积能比铝电容做得更小。
(电解电容的电容量取决于介质的介电能力和体积,在容量一定的情况下,介电能力越高,体积就可以做得越小,反之,体积就需要做得越大)再加上钽的性质比较稳定,所以通常认为钽电容性能比铝电容好。
但这种凭阳极判断电容性能的方法已经过时了,目前决定电解电容性能的关键并不在于阳极,而在于电解质,也就是阴极。
因为不同的阴极和不同的阳极可以组合成不同种类的电解电容,其性能也大不相同。
采用同一种阳极的电容由于电解质的不同,性能可以差距很大,总之阳极对于电容性能的影响远远小于阴极。
还有一种看法是认为钽电容比铝电容性能好,主要是由于钽加上二氧化锰阴极助威后才有明显好于铝电解液电容的表现。
如果把铝电解液电容的阴极更换为二氧化锰,那么它的性能其实也能提升不少。
可以肯定,ESR是衡量一个电容特性的主要参数之一。
但是,选择电容,应避免ESR越低越好,品质越高越好等误区。
衡量一个产品,一定要全方位、多角度的去考虑,切不可把电容的作用有意无意的夸大。
经验总结。
普通电解电容的结构是阳极和阴极和电解质,阳极是钝化铝,阴极是纯铝,所以关键是在阳极和电解质。
阳极的好坏关系着耐压电介系数等问题。
一般来说,钽电解电容的ESR要比同等容量同等耐压的铝电解电容小很多,高频性能更好。
如果那个电容是用在滤波器电路(比如中心为50Hz的带通滤波器)的话,要注意容量变化后对滤波器性能(通带...)的影响。
旁路电容的应用问题
嵌入式设计中,要求MCU从耗电量很大的处理密集型工作模式进入耗电量很少的空闲/休眠模式。
这些转换很容易引起线路损耗的急剧增加,增加的速率很高,达到20A/ms甚至更快。
通常采用旁路电容来解决稳压器无法适应系统中高速器件引起的负载变化,以确保电源输出的稳定性及良好的瞬态响应。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和噪声。
应该明白,大容量和小容量的旁路电容都可能是必需的,有的甚至是多个陶瓷电容和钽电容。
这样的组合能够解决上述负载电流或许为阶梯变化所带来的问题,而且还能提供足够的去耦以抑制电压和电流毛刺。
在负载变化非常剧烈的情况下,则需要三个或更多不同容量的电容,以保证在稳压器稳压前提供足够的电流。
快速的瞬态过程由高频小容量电容来抑制,中速的瞬态过程由低频大容量来抑制,剩下则交给稳压器完成了。
还应记住一点,稳压器也要求电容尽量靠近电压输出端。
电容的等效串联电阻ESR
普遍的观点是:
一个等效串联电阻(ESR)很小的相对较大容量的外部电容能很好地吸收快速转换时的峰值(纹波)电流。
但是,有时这样的选择容易引起稳压器(特别是线性稳压器LDO)的不稳定,所以必须合理选择小容量和大容量电容的容值。
永远记住,稳压器就是一个放大器,放大器可能出现的各种情况它都会出现。
由于DC/DC转换器的响应速度相对较慢,输出去耦电容在负载阶跃的初始阶段起主导的作用,因此需要额外大容量的电容来减缓相对于DC/DC转换器的快速转换,同时用高频电容减缓相对于大电容的快速变换。
通常,大容量电容的等效串联电阻应该选择为合适的值,以便使输出电压的峰值和毛刺在器件的Dasheet规定之内。
高频转换中,小容量电容在0.01μF到0.1μF量级就能很好满足要求。
表贴陶瓷电容或者多层陶瓷电容(MLCC)具有更小的ESR。
另外,在这些容值下,它们的体积和BOM成本都比较合理。
如果局部低频去耦不充分,则从低频向高频转换时将引起输入电压降低。
电压下降过程可能持续数毫秒,时间长短主要取决于稳压器调节增益和提供较大负载电流的时间。
用ESR大的电容并联比用ESR恰好那么低的单个电容当然更具成本效益。
然而,这需要你在PCB面积、器件数目与成本之间寻求折衷。
电解电容的电参数
这里的电解电容器主要指铝电解电容器,其基本的电参数包括下列五点:
1、电容值
电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。
因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。
在标准JISC5102规定:
铝电解电容的电容量的测量条件是在频率为120Hz,最大交流电压为0.5Vrms,DCbias电压为1.5~2.0V的条件下进行。
可以断言,铝电解电容器的容量随频率的增加而减小。
2、损耗角正切值Tanδ
在电容器的等效电路中,串联等效电阻ESR同容抗1/ωC之比称之为Tanδ,这里的ESR是在120Hz下计算获得的值。
显然,Tanδ随着测量频率的增加而变大,随测量温度的下降而增大。
3、阻抗Z
在特定的频率下,阻碍交流电流通过的电阻即为所谓的阻抗(Z)。
它与电容等效电路中的电容值、电感值密切相关,且与ESR也有关系。
Z=√[ESR2+(XL-XC)2]
式中,XC=1/ωC=1/2πfC
XL=ωL=2πfL
电容的容抗(XC)在低频率范围内随着频率的增加逐步减小,频率继续增加达到中频范围时电抗(XL)降至ESR的值。
当频率达到高频范围时感抗(XL)变为主导,所以阻抗是随着频率的增加而增加。
4、漏电流
电容器的介质对直流电流具有很大的阻碍作用。
然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。
通常,漏电流会随着温度和电压的升高而增大。
5、纹波电流和纹波电压
在一些资料中将此二者称做“涟波电流”和“涟波电压”,其实就是ripplecurrent,ripplevoltage。
含义即为电容器所能耐受纹波电流/电压值。
它们和ESR之间的关系密切,可以用下面的式子表示:
Urms=Irms×
R
式中,Vrms表示纹波电压
Irms表示纹波电流
R表示电容的ESR
由上可见,当纹波电流增大的时候,即使在ESR保持不变的情况下,涟波电压也会成倍提高。
换言之,当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低ESR值的原因。
叠加入纹波电流后,由于电容内部的等效串连电阻(ESR)引起发热,从而影响到电容器的使用寿命。
一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。
电容器参数的基本公式
1、容量(法拉)
英制:
C=(0.224×
K·
A)/TD
公制:
C=(0.0884×
2、电容器中存储的能量
E=?
CV2
3、电容器的线性充电量
I=C(dV/dt)
4、电容的总阻抗(欧姆)
Z=√[RS
2+(XC–XL)2]
5、容性电抗(欧姆)
XC=1/(2πfC)
6、相位角Ф
理想电容器:
超前当前电压90o
理想电感器:
滞后当前电压90o
理想电阻器:
与当前电压的相位相同
7、耗散系数(%)
D.F.=tanδ(损耗角)
=ESR/XC
=(2πfC)(ESR)
8、品质因素
Q=cotanδ=1/DF
9、等效串联电阻ESR(欧姆)
ESR=(DF)XC=DF/2πfC
10、功率消耗
PowerLoss=(2πfCV2)(DF)
11、功率因数
PF=sinδ(lossangle)–cosФ(相位角)
12、均方根
rms=0.707×
Vp
13、千伏安KVA(千瓦)
KVA=2πfCV2×
10-3
14、电容器的温度系数
T.C.=[(Ct–C25)/C25(Tt–25)]×
106
15、容量损耗(%)
CD=[(C1–C2)/C1]×
100
16、陶瓷电容的可靠性
L0/Lt=(Vt/V0)X(Tt/T0)Y
17、串联时的容值
n个电容串联:
1/CT=1/C1+1/C2+….+1/Cn
两个电容串联:
CT=C1·
C2/(C1+C2)
18、并联时的容值
CT=C1+C2+….+Cn
19、重复次数(AgaingRate)
A.R.=%?
C/decadeoftime
上述公式中的符号说明如下:
K=介电常数
A=面积
TD=绝缘层厚度
V=电压
t=时间
RS=串联电阻
f=频率
L=电感感性系数
δ=损耗角
Ф=相位角
L0=使用寿命
Lt=试验寿命
Vt=测试电压
V0=工作电压
Tt=测试温度
T0=工作温度
X,Y=电压与温度的效应指数。
在电路学里,给定电势差,电容器储存电荷的能力,称为电容(capacitance),标记为C。
采用国际单位制,电容的单位是法拉(farad),标记为F。
电容的符号是C。
C=εS/d=εS/4πkd(真空)=Q/U
在国际单位制里,电容的单位是法拉,简称法,符号是F,由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,换算关系是:
1法拉(F)=1000毫法(mF)=1000000微法(μF)
1微法(μF)=1000纳法(nF)=1000000皮法(pF)。
电容与电池容量的关系:
1伏安时=1瓦时=3600焦耳
w=0.5cuu
一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:
C=Q/U但电容的大小不是由Q(带电量)或U(电压)决定的,即:
C=εS/4πkd。
其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。
常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
定义式:
C=Q/U
电容器的电势能计算公式:
E=CU^2/2=QU/2=Q^2/2C
多电容器并联计算公式:
C=C1+C2+C3+…+Cn
多电容器串联计算公式:
1/C=1/C1+1/C2+…+1/Cn
三电容器串联:
C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)
电源输入端的X,Y安全电容
在交流电源输入端,一般需要增加三个电容来抑制EMI传导干扰。
交流电源的输入一般可分为三根线:
火线(L)/零线(N)/地线(G)。
在火线和地线之间及在零线和地线之间并接的电容,一般称之为Y电容。
这两个Y电容连接的位置比较关键,必须需要符合相关安全标准,以防引起电子设备漏电或机壳带电,容易危及人身安全及生命,所以它们都属于安全电容,要求电容值不能偏大,而耐压必须较高。
一般地,工作在亚热带的机器,要求对地漏电电流不能超0.7mA;
工作在温带机器,要求对地漏电电流不能超过0.35mA。
因此,Y电容的总容量一般都不能超过4700pF。
特别提示:
Y电容为安全电容,必须取得安全检测机构的认证。
Y电容的耐压一般都标有安全认证标志和AC250V或AC275V字样,但其真正的直流耐压高达5000V以上。
因此,Y电容不能随意使用标称耐压AC250V,或DC400V之类的普通电容来代用。
在火线和零线抑制之间并联的电容,一般称之为X电容。
由于这个电容连接的位置也比较关键,同样需要符合安全标准。
因此,X电容同样也属于安全电容之一。
X电容的容值允许比Y电容大,但必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。
安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。
同理,X电容也是安全电容,必须取得安全检测机构的认证。
X电容的耐压一般都标有安全认证标志和AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V,或DC400V之类
的的普通电容来代用。
X电容一般都选用纹波电流比较大的聚脂薄膜类电容,这种电容体积一般都很大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。
普通电容纹波电流的指标都很低,动态内阻较高。
用普通电容代替X电容,除了耐压条件不能
满足以外,一般纹波电流指标也是难以满足要求的。
实际上,仅仅依赖于Y电容和X电容来完全滤除掉传导干扰信号是不太可能的。
因为干扰信号的频谱非常宽,基本覆盖了几十KHz到几百MHz,甚至上千MHz的频率范围。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电容 工作 原理 作用