初高中数学公式大全文档格式.docx
- 文档编号:22933280
- 上传时间:2023-02-06
- 格式:DOCX
- 页数:34
- 大小:32.91KB
初高中数学公式大全文档格式.docx
《初高中数学公式大全文档格式.docx》由会员分享,可在线阅读,更多相关《初高中数学公式大全文档格式.docx(34页珍藏版)》请在冰豆网上搜索。
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°
的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°
那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×
180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形
63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×
b)÷
2
67菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形
69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第
三边
81三角形中位线定理三角形的中位线平行于第三边,并且等于它
的一半
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的
一半L=(a+b)÷
2S=L×
h
83
(1)比例的基本性质如果a:
b=c:
d,那么ad=bc
如果ad=bc,那么a:
d
84
(2)合比性质如果a/b=c/d,那么(a±
b)/b=(c±
d)/d
85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应
线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;
同圆或等圆中,相等的圆周角所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;
90°
的圆周角所
对的弦是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和圆O相交(直线到圆心的距离)d<r(圆半径)
②直线L和圆O相切d=r
③直线L和圆O相离d>r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1经过圆心且垂直于切线的直线必经过切点
125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d>R+r②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦
137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×
/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2p表示正n边形的周长
142正三角形面积√3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°
,因此k×
(n-2)180°
/n=360°
化为(n-2)(k-2)=4
144弧长计算公式:
L=n兀R/180
145扇形面积公式:
S扇形=n兀R^2/360=LR/2
146内公切线长=d-(R-r)外公切线长=d-(R+r)
几何公式:
1、多边形内角和公式:
n边形的内角和等于(n-2)180o(n≥3,n是正整数),外角和等于360o
2、平行线分线段成比例定理:
(1)平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例。
如图:
a∥b∥c,直线l1与l2分别与直线a、b、c相交与点A、B、C
D、E、F,则有:
(图1)
(2)推论:
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
△ABC中,DE∥BC,DE与AB、AC相交与点D、E,则有:
(图2)(图3)
*3、直角三角形中的射影定理:
如图:
Rt△ABC中,∠ACB=90o,CD⊥AB于D,则有:
(图4)(图5)
4、圆的有关性质:
(1)垂径定理:
如果一条直线具备以下五个性质中的-任意两个性质:
①经过圆心;
②垂直弦;
③平分弦;
④平分弦所对的劣弧;
-⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:
具备①,③时,弦不能是直径.
(2)两条平行弦所夹的弧相等.
(3)圆心角的度-数等于它所对的弧的度数.
(4)一条弧所对的圆周角等于它所对的圆心角的一半.
(5)圆周-角等于它所对的弧的度数的一半.
(6)同弧或等-弧所对的圆周角相等.
(7)在同圆或等圆中,相等的圆周角所对的弧相等.
(8)90o的圆周角-所对的弦是直径,反之,直径所对的圆周角是90o,直径是最长的弦.
(9)圆内接四边形的对角互补.
5、三角形的内心与外心:
三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点.三-角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.
常见结论:
(1)Rt△ABC的三条边分别为:
a、b、c(c为斜边),则它的内切圆的半径-(图6);
(2)△ABC的周长为(图7-0),面积为S,其内切圆的半径为r,则(图7);
*6、弦切角定理及其推论:
(1)弦切角:
顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。
∠PAC为弦切角。
(2)弦切角定理:
弦切角度数等于它所夹的弧的度数的一半。
如果AC是⊙O的弦,PA是⊙O的切线,A为切点,则(图8)
推论:
弦切角等于所夹弧所对的圆周角(作用证明角相等)
如果AC是⊙O的弦,PA是⊙O的切线,A为切点,则(图9)(图10)
*7、相交弦定理、割线定理、切割线定理:
相交弦定理:
圆内的两条弦相交,被交点分成的两条线段长的积相等。
如图①,即:
PA·
PB=PC·
PD
割线定理:
从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段长的积相等。
如图②,即:
切割线定理:
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
如图③,即:
PC2=PA·
PB
(图11)
8、面积公式:
①S正△=-(图12)-×
(边长)2.
-②S平行四边形=底×
高.
③S菱形=底×
高=-(图13)-×
(对角线的积),(图14)-
④S圆=πR2.
⑤l圆周长=2πR.
⑥弧长L=-(图15)-.
-⑦(图16)
⑧S圆柱侧=底面周长×
高=2πrh,S全面积=S侧+S底=2πrh+2πr2
⑨S圆锥侧=--×
底面周长×
母线=πrb,S全面积=S侧+S底=πrb+πr2
数学公式
1、整数(包括:
正整数、0、负整数)和分数(包括:
有限小数和无限环循小数)都是有理数.如:
-3,-(图17)-,0.231,0.737373…,-(图18)-,-(图19)-.-无限不环循小数叫做无理数.-如:
π,-(图20)-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.
2、-绝对值:
a≥0-(图21)-丨a丨=a;
-a≤0(图21)--丨a丨=-a.如:
丨--(图22)-丨=-(图22)-;
丨3.14-π丨=π-3.14.
3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个-近似数的有效数字.如:
0.05972精确到0.001得0.060,结果有两个有效数字6,0.
4、把一个数写成±
a×
10n-的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:
-40700=-4.07×
105,0.000043=-4.3×
10-5.
5、乘法公式(反过来就是因式分解的公式):
①(a+b)(a-b)=a2-b2.②(a±
b)2=a2±
2ab+b2.③-(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;
a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.
6、幂的运算性质:
①-am×
an=am+n.②am÷
an=am-n.③(am)n=amn.④(ab)n=anbn.⑤((图23)-)n=-n-.
⑥a-n=(图24),特别:
(-(图23)-)-n=(-(图25)-)n.-⑦-a0=1(a≠0).如:
a3×
a2=a5,a6÷
a2=a4,(a3)2=a6,(3a3-)3=27a9,(-3)-1=--(图26)-,5-2=-(图27)-=-(图28)-,-((图29)-)-2=(-(图30)-)2=-(图31)-,(-3.14)o=1,-(--(图22)-(图18)-)0=1.
7、二次根式:
①-(-(图32)-)2=a-(a≥0),②-(图34)-=丨a丨,③-(图35-0)-=-(图32)-×
-(图33)-,④-(图35)-=-(图36)-(a>0,b≥0)-.如:
①-(3-(图20)-)2=45.②-(图37)-=6.③a<0时,-(图38)-=-a--(图33).④-(图39)-的平方根=4的平方根=±
2.(平方根、立方根、算术平方根的概念)
8、一元二次方程:
对于方程:
ax2+bx+c=0:
①求根公式是x=-(图40)-,其中-△=b2-4ac叫做根-的判别式.
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根;
当-△<0时,方程没有实数根.注意:
当△≥0时,方程有实数根.
②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).
③以a和b为根的一-元二次方程是-x2-(a+b)x+ab=0.
9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y-随x的增大而增大(直线从左向右上升);
当k<0时,y随x的增大而减小(直线从左向右下降).特别:
当b=0时,y=kx-(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.
10、反比例函数y=--(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);
当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.
11、统计初步:
(1)概念:
①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.
(2)公式:
设有n个数-x1,x2,…,xn-,那么:
①平均数为:
(图41);
②极差:
用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:
极差=最大值-最小值;
③方差:
数据(图44),则=(图42)
标准差:
方差的算术平方根.
数据(图45),则=(图43)
一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:
(1)频率=,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率
①如果用P表示一个事件A发生的概率,则0≤P(A)≤1;
P(必然事件)=1;
P(不可能事件)=0;
②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;
13、锐角三角函数:
①设∠A是Rt△ABC的任一锐角,则∠A的正弦:
sinA=-,∠A的余弦:
cosA=--,∠A的正切:
tanA=-.并且sin2A+cos2A=1.
0<sinA<1,-0<cosA<1,-tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小.
②余角公式:
sin(90o-A)=cosA,-cos(90o-A)=sinA.
h
l
α
③特殊角的三角函数值:
sin30o=cos60o=--,sin45o=cos45o=--,sin60o=cos30o=--,tan30o=,tan45o=1,tan60o-=.
④斜坡的坡度:
-i=--=--.设坡角为α,则i=tanα=--.
14、平面直角坐标系中的有关知识:
(1)对称性:
若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b).
(2)坐标平移:
若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);
向上平移h个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b-h).如:
点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1).
15、二次函数的有关知识:
1.定义:
一般地,如果是常数,,那么叫做的二次函数.
2.抛物线的三要素:
开口方向、对称轴、顶点.
①的符号决定抛物线的开口方向:
当时,开口向上;
当时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于轴(或重合)的直线记作.特别地,轴记作直线.
几种特殊的二次函数的图像特征如下:
函数解析式
开口方向
对称轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 公式 大全