关于3D打印的论述.docx
- 文档编号:22841686
- 上传时间:2023-04-28
- 格式:DOCX
- 页数:22
- 大小:37.75KB
关于3D打印的论述.docx
《关于3D打印的论述.docx》由会员分享,可在线阅读,更多相关《关于3D打印的论述.docx(22页珍藏版)》请在冰豆网上搜索。
关于3D打印的论述
关于3D打印的论述
3D打印机(3D Printers)是可以“打印”出真实的3D物体的一种设备,把数据和原料放进3D打印中,机器会按照程序把产品一层层造出来。
打印出的产品,可以即时使用。
中文名
英文名
分类
功能
3D打印
3D printing
计算机
计算机图形数据中生成物体
1、3D打印的简介
2、3D打印的历史发展
3、3D打印的原理技术
4、3D打印的过程
5、3D打印的限制因素
6、3D打印的社会评价
7、3D打印应用领域
8、3D打印的重要事件
9、3D打印的发展方向
10、3D打印的功能
11、3D打印的操作流程
12、3D打印的主要特点
13、3D打印故障排除
14、3D打印发展现状
15、3D打印政策引领
1.3D打印简介:
3D打印(3DP)即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
3D打印通常是采用数字技术材料打印机来实现的。
常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。
该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。
2.3D打印历史发展:
3D打印技术出现在20世纪90年代中期,1986年,美国科学家CharlesHull开发了第一台商业3D印刷机。
实际上是利用光固化和纸层叠等技术的最新快速成型装置。
它与普通打印工作原理基本相同,打印机内装有液体或粉末等“打印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。
这打印技术称为3D立体打印技术。
2.1研发产品
1)家用3D打印
德国发布了一款迄今为止最高速的纳米级别微型3d打印机——PhotonicProfessionalGT。
这款PhotonicProfessionalGT3D打印机,能制作纳米级别的微型结构,以最高的分辨率,快速的打印宽度,打印出不超过人类头发直径的三维物体。
2)最小的3D打印机
世上最小的3D打印机来自维也纳技术大学,由其化学研究员和机械工程师研制。
这款迷你3D打印机只有大装牛奶盒大小,重量约3.3磅(约1.5公斤),造价1200欧元(约1.1万元人民币)。
相比于其他的打印技术,这款3D打印机的成本大大降低。
研发人员还在对打印机进行材料和技术的进一步实验,希望能够早日面世。
3)最大的3D打印
华中科技大学史玉升科研团队经过十多年努力,实现重大突破,研发出全球最大的“3D打印机”。
这一“3D打印机”可加工零件长宽最大尺寸均达到1.2米。
从理论上说,只要长宽尺寸小于1.2米的零件(高度无需限制),都可通过这部机器“打印”出来。
这项技术将复杂的零件制造变为简单的由下至上的二维叠加,大大降低了设计与制造的复杂度,让一些传统方式无法加工的奇异结构制造变得快捷,一些复杂铸件的生产由传统的3个月缩短到10天左右。
大连理工大学参与研发的最大加工尺寸达1.8米的世界最大激光3D打印机进入调试阶段,其采用“轮廓线扫描”的独特技术路线,可以制作大型工业样件及结构复杂的铸造模具。
这种基于“轮廓失效”的激光三维打印方法已获得两项国家发明专利。
该激光3D打印机只需打印零件每一层的轮廓线,使轮廓线上砂子的覆膜树脂碳化失效,再按照常规方法在180℃加热炉内将打印过的砂子加热固化和后处理剥离,就可以得到原型件或铸模。
这种打印方法的加工时间与零件的表面积成正比,大大提升打印效率,打印速度可达到一般3D打印的5—15倍。
4)彩印3D打印
2013年5月上市了这种类型的3D打印机新产品“ProJetx60”系列。
ProJet品牌主要有四种造型方法的装置。
其余三种均是使用光硬化性树脂的类型,包括用激光硬化光硬化性树脂液面的类型、从喷嘴喷出光硬化性树脂后照射光进行硬化的类型(这种类型的造型材料还可以使用蜡)、向薄膜上的光硬化性树脂照射经过掩模的光的类型。
高端机型ProJet660Pro和ProJet860Pro可以使用CMYK(青色、洋红、黄色、黑色)4种颜色的粘合剂,实现600万色以上的颜色ProJet260C和ProJet460Plus使用CMY三种颜色的粘合剂)。
5)3D打印机器人
2013年11月23日,西安电子科技大学展出3D打印机器人,这是一台远程体感控制服务机器人,最主要的功能是照顾老人。
很多老人行动不便,有了机器人助手,只要对着摄像头做出手势,机器人就能模仿动作去做家务。
3.3D打印原理技术:
日常生活中使用的普通打印机可以打印电脑设计的平面物品,而所谓的3D打印机与普通打印机工作原理基本相同,只是打印材料有些不同,普通打印机的打印材料是墨水和纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,打印机与电脑连接后,通过电脑控制可以把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。
通俗地说,3D打印机是可以“打印”出真实的3D物体的一种设备,比如打印一个机器人、打印玩具车,打印各种模型,甚至是食物等等。
之所以通俗地称其为“打印机”是参照了普通打印机的技术原理,因为分层加工的过程与喷墨打印十分相似。
这项打印技术称为3.13D立体打印技术:
3D打印存在着许多不同的技术。
它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。
3D打印常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。
选择性激光烧结、直接金属激光烧结、熔融沉积成型、立体平版印刷、数字光处理、熔丝制造、电子束熔化成型、选择性热烧结、粉末层喷头三维打印等等。
3.2专利技术
熔融沉积快速成型(FusedDepositionModeling,FDM)
光固化成型(StereolithigraphyApparatus,SLA)
三维粉末粘接(ThreeDimensionalPrintingandGluing,3DP)
选择性激光烧结(SelectingLaserSintering,SLS)[12-13]
4.3D打印过程
4.1三维设计
三维打印的设计过程是:
先通过计算机建模软件建模,再将建成的三维模型“分区”成逐层的截面,即切片,从而指导打印机逐层打印。
设计软件和打印机之间协作的标准文件格式是STL文件格式。
一个STL文件使用三角面来近似模拟物体的表面。
三角面越小其生成的表面分辨率越高。
PLY是一种通过扫描产生的三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。
4.2切片处理
打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。
这种技术的特点在于其几乎可以造出任何形状的物品。
打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。
一般的厚度为100微米,即0.1毫米,也有部分打印机如ObjetConnex系列还有三维 Systems'ProJet系列可以打印出16微米薄的一层。
而平面方向则可以打印出跟激光打印机相近的分辨率。
打印出来的“墨水滴”的直径通常为50到100个微米。
用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。
而用三维打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。
传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。
一个桌面尺寸的三维打印机就可以满足设计者或概念开发小组制造模型的需要。
4.3完成打印
三维打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:
先用当前的三维打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。
有些技术可以同时使用多种材料进行打印。
有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。
5.3D打印限制因素
5.1材料的限制
虽然高端工业印刷可以实现塑料、某些金属或者陶瓷打印,但无法实现打印的材料都是比较昂贵和稀缺的。
另外,打印机也还没有达到成熟的水平,无法支持日常生活中所接触到的各种各样的材料。
研究者们在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。
5.2机器的限制
3D打印技术在重建物体的几何形状和机能上已经获得了一定的水平,几乎任何静态的形状都可以被打印出来,但是那些运动的物体和它们的清晰度就难以实现了。
这个困难对于制造商来说也许是可以解决的,但是3D打印技术想要进入普通家庭,每个人都能随意打印想要的东西,那么机器的限制就必须得到解决才行。
5.3知识产权的忧虑
在过去的几十年里,音乐、电影和电视产业中对知识产权的关注变得越来越多。
3D打印技术也会涉及到这一问题,因为现实中的很多东西都会得到更加广泛的传播。
人们可以随意复制任何东西,并且数量不限。
如何制定3D打印的法律法规用来保护知识产权,也是我们面临的问题之一,否则就会出现泛滥的现象。
5.4道德的挑战
道德是底线。
什么样的东西会违反道德规律是很难界定的,如果有人打印出生物器官和活体组织,在不久的将来会遇到极大的道德挑战。
5.5花费的承担
3D打印技术需要承担的花费是高昂的。
第一台3D打印机的售价为1万5。
如果想要普及到大众,降价是必须的,但又会与成本形成冲突。
每一种新技术诞生初期都会面临着这些类似的障碍,但相信找到合理的解决方案3D打印技术的发展将会更加迅速,就如同任何渲染软件一样,不断地更新才能达到最终的完善。
6.3D打印社会评价
3D打印技术是无法应用于大量生产,所以有些专家鼓吹3D打印是第三次工业革命,这个说法只是个噱头。
富士康为苹果代工生产iPhone已经多年。
郭台铭以3D打印制造的手机为例,说明3D打印的产品只能看不能用,因为这些产品上不能加上电子元器件,无法为电子产品量产。
3D打印即使不生产电子产品,但受材料的限制,可以生产的其他产品也很少,“即使生产出来的产品,也无法量产,而且一摔就碎。
“3D打印的确更适合一些小规模制造,尤其是高端的定制化产品,比如汽车零部件制造。
虽然主要材料还是塑料,但未来金属材料肯定会被运用到3D打印中来,”克伦普说,3D打印技术先后进入了牙医、珠宝、医疗行业,未来可应用的范围会越来越广。
2014年11月末,3D打印技术被《时代》周刊为2014年25项年度最佳发明。
对消费者和企业而言,这是个福音。
仅在过去一年中,中学生们3D打印了用于物理课实验的火车车厢,科学家们3D打印了人类器官组织,通用电气公司则使用3D打印技术改进了其喷气引擎的效率。
美国三维系统公司的3D打印机能打印糖果和乐器等,该公司首席执行官阿维·赖兴塔尔说:
“这的确是一种巧夺天工的技术。
”
7.3D打印应用领域
7.1海军舰艇
2014年7月1日,美国海军试验了利用3D打印等先进制造技术快速制造舰艇零件,希望借此提升执行任务速度并降低成本。
2014年6月24日至6月26日,美海军在作战指挥系统活动中举办了第一届制汇节,开展了一系列“打印舰艇”研讨会,并在此期间向水手及其他相关人员介绍了3D打印及增材制造技术。
美国海军致力于未来在这方面培训水手。
采用3D打印及其他先进制造方法,能够显著提升执行任务速度及预备状态,降低成本,避免从世界各地采购舰船配件。
美国海军作战舰队后勤科副科长PhilCullom表示,考虑到成本及海军后勤及供应链现存的漏洞,以及面临的资源约束,先进制造与3D打印的应用越来越广,他们设想了一个由技术娴熟的水手支持的先进制造商的全球网络,找出问题并制造产品.
7.2航天科技
2014年9月底,NASA预计将完成首台成像望远镜,所有元件基本全部通过3D打印技术制造。
NASA也因此成为首家尝试使用3D打印技术制造整台仪器的单位。
这款太空望远镜功能齐全,其50.8毫米的摄像头使其能够放进立方体卫星(CubeSat,一款微型卫星)当中。
据了解,这款太空望远镜的外管、外挡板及光学镜架全部作为单独的结构直接打印而成,只有镜面和镜头尚未实现。
该仪器将于2015年开展震动和热真空测试。
这款长50.8毫米的望远镜将全部由铝和钛制成,而且只需通过3D打印技术制造4个零件即可,相比而言,传统制造方法所需的零件数是3D打印的5-10倍。
此外,在3D打印的望远镜中,可将用来减少望远镜中杂散光的仪器挡板做成带有角度的样式,这是传统制作方法在一个零件中所无法实现的。
2014年8月31日,美国宇航局的工程师们刚刚完成了3D打印火箭喷射器的测试,本项研究在于提高火箭发动机某个组件的性能,由于喷射器内液态氧和气态氢一起混合反应,这里的燃烧温度可达到6000华氏度,大约为3315摄氏度,可产生2万磅的推力,约为9吨左右,验证了3D打印技术在火箭发动机制造上的可行性。
本项测试工作位于阿拉巴马亨茨维尔的美国宇航局马歇尔太空飞行中心,这里拥有较为完善的火箭发动机测试条件,工程师可验证3D打印部件在点火环境中的性能。
制造火箭发动机的喷射器需要精度较高的加工技术,如果使用3D打印技术,就可以降低制造上的复杂程度,在计算机中建立喷射器的三维图像,打印的材料为金属粉末和激光,在较高的温度下,金属粉末可被重新塑造成我们需要的样子。
火箭发动机中的喷射器内有数十个喷射元件,要建造大小相似的元件需要一定的加工精度,该技术测试成功后将用于制造RS-25发动机,其作为美国宇航局未来太空发射系统的主要动力,该火箭可运载宇航员超越近地轨道,进入更遥远的深空。
马歇尔中心的工程部主任克里斯认为3D打印技术在火箭发动机喷油器上应用只是第一步,我们的目的在于测试3D打印部件如何能彻底改变火箭的设计与制造,并提高系统的性能,更重要的是可以节省时间和成本,不太容易出现故障。
本次测试中,两具火箭喷射器进行了点火,每次5秒,设计人员创建的复杂几何流体模型允许氧气和氢气充分混合,压力为每平方英寸1400磅。
2014年10月11日,英国一个发烧友团队用3D打印技术制出了一枚火箭,他们还准备让这个世界上第一个打印出来的火箭升空。
该团队于当地时间在伦敦的办公室向媒体介绍这个世界第一架用3D打印技术制造出的火箭。
团队队长海恩斯说,有了3D打印技术,要制造出高度复杂的形状并不困难。
就算要修改设计原型,只要在计算机辅助设计的软件上做出修改,打印机将会做出相对的调整。
这比之前的传统制造方式方便许多。
既然美国宇航局已经在使用3D打印技术制造火箭的零件,3D打印技术的前景是十分光明的。
据介绍,这个名为“低轨道氦辅助导航”的工程项目由一家德国数据分析公司赞助。
打印出的这枚火箭重3公斤,高度相当于一般成年人身高,是该团队用4年时间、花了6000英镑制造出来的。
等一笔1.5万英镑的资助确定之后,他们将于今年底在新墨西哥州的美国航天港发射该火箭。
一个装满氦的巨型气球将把火箭提升到20000米高空,装置在火箭里的全球定位系统将启动火箭引擎,火箭喷射速度将达到每小时1610公里。
之后,火箭上的自动驾驶系统将引导火箭回返地球,而里头的摄像机将把整个过程拍摄下来。
美国国家航空航天局(NASA)官网2015年4月21日报道,NASA工程人员正通过利用增材制造技术制造首个全尺寸铜合金火箭发动机零件以节约成本,NASA空间技术任务部负责人表示,这是航空航天领域3D打印技术应用的新里程碑。
2015年6月22日报道,国营企业俄罗斯技术集团公司以3D打印技术制造出一架无人机样机,重3.8公斤,翼展2.4米,飞行时速可达90至100公里,续航能力1至1.5小时。
公司发言人弗拉基米尔·库塔霍夫介绍,公司用两个半月实现了从概念到原型机的飞跃,实际生产耗时仅为31小时,制造成本不到20万卢布(约合3700美元)。
2016年4月19日,中科院重庆绿色智能技术研究院3D打印技术研究中心
对外宣布,经过该院和中科院空间应用中心两年多的努力,并在法国波尔多完成抛物线失重飞行试验,国内首台空间在轨3D打印机宣告研制成功。
这台3D打印机可打印最大零部件尺寸达200×130mm,它可以帮助宇航员在失重环境下自制所需的零件,大幅提高空间站实验的灵活性,减少空间站备品备件的种类与数量和运营成本,降低空间站对地面补给的依赖性。
7.3医学领域
1)3D打印肝脏模型
日本筑波大学和大日本印刷公司组成的科研团队2015年7月8日宣布,已研发出用3D打印机低价制作可以看清血管等内部结构的肝脏立体模型的方法。
据称,该方法如果投入应用就可以为每位患者制作模型,有助于术前确认手术顺序以及向患者说明治疗方法。
这种模型是根据CT等医疗检查获得患者数据用3D打印机制作的。
模型按照表面外侧线条呈现肝脏整体形状,详细地再现其内部的血管和肿瘤。
由于肝脏模型内部基本是空洞,重要血管等的位置一目了然。
据称,制作模型需要少量价格不菲的树脂材料,使原本约30万至40万日元(约合人民币1.5万至2万元)的制作费降到原先的三分之一以下。
利用3D打印技术制作的内脏器官模型主要用于研究,由于价格高昂,在临床上没有得到普及。
科研团队表示,他们一方面争取到2016年度实现肝脏模型的实际应用,另一方面将推进对胰脏等器官模型制作技术的研发。
2)3D打印头盖骨
2014年8月28日,46岁的周至农民胡师傅在自家盖房子时,从3层楼坠落后砸到一堆木头上,左脑盖被撞碎,在当地医院手术后,胡师傅虽然性命无损,但左脑盖凹陷,在别人眼里成了个“半头人”。
除了面容异于常人,事故还伤了胡师傅的视力和语言功能。
医生为帮其恢复形象,采用3D打印技术辅助设计缺损颅骨外形,设计了钛金属网重建缺损颅眶骨,制作出缺损的左“脑盖”,最终实现左右对称。
医生称手术约需5至10小时,除了用钛网支撑起左边脑盖外,还需要从腿部取肌肉进行填补。
手术后,胡师傅的容貌将恢复,至于语言功能还得术后看恢复情况。
3)3D打印脊椎植入人体
2014年8月,北京大学研究团队成功地为一名12岁男孩植入了3D打印脊椎,这属全球首例。
据了解,这位小男孩的脊椎在一次足球受伤之后长出了一颗恶性肿瘤,医生不得不选择移除掉肿瘤所在的脊椎。
不过,这次的手术比较特殊的是,医生并未采用传统的脊椎移植手术,而是尝试先进的3D打印技术。
研究人员表示,这种植入物可以跟现有骨骼非常好地结合起来,而且还能缩短病人的康复时间。
由于植入的3D脊椎可以很好地跟周围的骨骼结合在一起,所以它并不需要太多的“锚定”。
此外,研究人员还在上面设立了微孔洞,它能帮助骨骼在合金之间生长,换言之,植入进去的3D打印脊椎将跟原脊柱牢牢地生长在一起,这也意味着未来不会发生松动的情况。
4)3D打印手掌治疗残疾
2014年10月,医生和科学家们使用3D打印技术为英国苏格兰一名5岁女童装上手掌。
这名女童名为海莉·弗雷泽,出生时左臂就有残疾,没有手掌,只有手腕。
在医生和科学家的合作下,为她设计了专用假肢并成功安装。
5)3D打印心脏救活2周大先心病婴儿
2014年10月13日,纽约长老会医院的埃米尔·巴查博士(Dr.EmileBacha)医生就讲述了他使用3D打印的心脏救活一名2周大婴儿的故事。
这名婴儿患有先天性心脏缺陷,它会在心脏内部制造“大量的洞”。
在过去,这种类型的手术需要停掉心脏,将其打开并进行观察,然后在很短的时间内来决定接下来应该做什么。
但有了3D打印技术之后,巴查医生就可以在手术之前制作出心脏的模型,从而使他的团队可以对其进行检查,然后决定在手术当中到底应该做什么。
这名婴儿原本需要进行3-4次手术,而现在一次就够了,这名原本被认为寿命有限的婴儿可以过上正常的生活。
巴查医生说,他使用了婴儿的MRI数据和3D打印技术制作了这个心脏模型。
整个制作过程共花费了数千美元,不过他预计制作价格会在未来降低。
3D打印技术能够让医生提前练习,从而减少病人在手术台上的时间。
3D模型有助于减少手术步骤,使手术变得更为安全。
2015年1月,在迈阿密儿童医院,有一位患有“完全型肺静脉畸形引流(TAPVC)”的4岁女孩AdanelieGonzalez,由于疾病她的呼吸困难免疫系统薄弱,如果不实施矫正手术仅能存活数周甚至数日。
心血管外科医生借助3D心脏模型的帮助,通过对小女孩心脏的完全复制3D模型,成功地制定出了一个复杂的矫正手术方案。
最终根据方案,成功地为小女孩实施了永久手术,现在小女孩的血液恢复正常流动,身体在治疗中逐渐恢复正常。
6)3D打印制药
2015年8月5日,首款由Aprecia制药公司采用3D打印技术制备的SPRITAM(左乙拉西坦,levetiracetam)速溶片得到美国食品药品监督管理局(FDA)上市批准,并将于2016年正式售卖。
这意味着3D打印技术继打印人体器官后进一步向制药领域迈进,对未来实现精准性制药、针对性制药有重大的意义。
该款获批上市的“左乙拉西坦速溶片”采用了Aprecia公司自主知识产权的ZipDose3D打印技术。
通过3D打印制药生产出来的药片内部具有丰富的孔洞,具有极高的内表面积,故能在短时间内迅速被少量的水融化。
这样的特性给某些具有吞咽性障碍的患者带来了福音。
这种设想主要针对病人对药品数量的需求问题,可以有效地减少由于药品库存而引发的一系列药品发潮变质、过期等问题。
事实上,3D打印制药最重要的突破是它能进一步实现为病人量身定做药品的梦想。
7)3D打印胸腔
最近科学家们为传统的3D打印身体部件增添了一种钛制的胸骨和胸腔—3D打印胸腔。
这些3D打印部件的幸运接受者是一位54岁的西班牙人,他患有一种胸壁肉瘤,这种肿瘤形成于骨骼、软组织和软骨当中。
医生不得不切除病人的胸骨和部分肋骨,以此阻止癌细胞扩散。
这些切除的部位需要找到替代品,在正常情况下所使用的金属盘会随着时间变得不牢固,并容易引发并发症。
澳大利亚的CSIRO公司创造了一种钛制的胸骨和肋骨,与患者的几何学结构完全吻合。
CSIRO公司根据病人的CT扫描设计并制造所需的身体部件。
工作人员会借助CAD软件设计身体部分,输入到3D打印机中。
手术完成两周后,病人就被允许离开医院了,而且一切状况良好。
8)3D血管打印机
2015年10月,我国863计划3D打印血管项目取得重大突破,世界首创的3D生物血管打印机由四川蓝光英诺生物科技股份有限公司成功研制问世。
该款血管打印机性能先进,仅仅2分钟便打出10厘米长的血管。
不同于市面上现有的3D生物打印机,3D生物血管打印机可以打印出血管独有的中空结构、多层不同种类细胞,这是世界首创。
7.3房屋建筑
2014年8月,10幢3D打印建筑在上海张江高新青浦园区内交付使用,作为当地动迁工程的办公用房。
这些“打印”的建筑墙体是用建筑垃圾制成的特殊“油墨”,按照电脑设计的图纸和方案,经一台大型3D打印机层层叠加喷绘而成,10幢小屋的建筑过程仅花费24小时。
2014年9月5日,世界各地的建筑师们正在为打造全球首款3D打印房屋而竞赛。
3D打印房屋在住房容纳能力和房屋定制方面具有意义深远的突破。
在荷兰首都阿姆斯特丹,一个建筑师团队已经开始制造全球首栋3D打印房屋,而且采用的建筑材料是可再生的生物基材料。
这栋建筑名为“运河住宅(CanalHouse)”,由13间房屋组成。
这个项目位于阿姆斯特丹北部运河的一块空地上,有望3年内完工。
在建中的“运河住宅”已经成了公共博物馆,美国总统奥巴马曾经到那里参观。
荷兰DU
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 关于 打印 论述