平均数优质课公开课教案教学实录3.docx
- 文档编号:22800598
- 上传时间:2023-04-28
- 格式:DOCX
- 页数:11
- 大小:20.95KB
平均数优质课公开课教案教学实录3.docx
《平均数优质课公开课教案教学实录3.docx》由会员分享,可在线阅读,更多相关《平均数优质课公开课教案教学实录3.docx(11页珍藏版)》请在冰豆网上搜索。
平均数优质课公开课教案教学实录3
教学目标 :
1、使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学规律的兴趣,积累积极的数学学习体验。
教学重点 :
掌握求平均数的方法,“移多补少”“先合并再平分”的实际意义和应用。
教学难点 :
理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题 。
教具学具 :
多媒体课件
教学过程:
一、初步建立平均数的意义
师:
你们喜欢体育运动吗?
生:
(齐)喜欢!
师:
如果张老师告诉大家,我最喜欢并且最拿手的体育运动是篮球,你们相信吗?
生:
不相信。
篮球运动员通常都很强壮,就像姚明和乔丹那样。
张老师,您也太瘦了点。
师:
真是哪壶不开提哪壶啊。
不过还别说,和你们一样,我们班上的小力、小林、小刚对我的投篮技术也深表怀疑。
就在上星期,他们三人还约我进行了一场“1分钟投篮挑战赛”。
怎么样,想不想了解现场的比赛情况?
生:
(齐)想!
师:
首先出场的是小力,他1分钟投中了5个球。
可是,小力对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再投两次。
如果你是张老师,你会同意他的要求吗?
生:
我不同意。
万一他后面两次投中的多了,那我不就危险啦!
生:
我会同意的。
做老师的应该大度一点。
师:
呵呵,还真和我想到一块儿去了。
不过,小力后两次的投篮成绩很有趣。
(师出示小力的后两次投篮成绩:
5个,5个。
生会心地笑了)
师:
还真巧,小力三次都投中了5个。
现在看来,要表示小力1分钟投中的个数,用哪个数比较合适?
生:
5。
师:
为什么?
生:
他每次都投中5个,用5来表示他1分钟投中的个数最合适了。
师:
说得有理!
接着该小林出场了。
小林1分钟又会投中几个呢?
我们也一起来看看吧。
(师出示小林第一次投中的个数:
3个)
师:
如果你是小林,会就这样结束吗?
生:
不会!
我也会要求再投两次的。
师:
为什么?
生:
这也太少了,肯定是发挥失常。
师:
正如你们所说的,小林果然也要求再投两次。
不过,麻烦来了。
(出示小林的后两次成绩:
5个,4个)三次投篮,结果怎么样?
生:
(齐)不同。
师:
是呀,三次成绩各不相同。
这一回,又该用哪个数来表示小林1分钟投篮的一般水平呢?
生:
我觉得可以用5来表示,因为他最多,二次投中了5个。
生:
我不同意川、强每次都投中5个,所以用5来表示他的成绩。
但小林另外两次分别投中4个和3个,怎么能用5来表示呢?
师:
也就是说,如果也用5来表示,对小力来说——
生:
(齐)不公平!
师:
该用哪个数来表示呢?
生:
可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。
师:
不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。
生:
(齐)那他还有一次投中3个,比4个少1呀。
师:
哦,一次比4多1,一次比4少1……
生:
那么,把5里面多的1个送给3,这样不就都是4个了吗?
师:
数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。
这一过程就叫“移多补少”。
移完后,小林每分钟看起来都投中了几个?
生:
(齐)4个。
师:
能代表小林1分钟投篮的一般水平吗?
生:
(齐)能!
师:
轮到小刚出场了。
(出示图)小刚也投了三次,成绩同样各不相同。
这一回,又该用几来代表他1分钟投篮的一般水平呢?
同学们先独立思考,然后在小组里交流自己的想法。
生:
我觉得可以用4来代表他1分钟的投篮水平。
他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。
所以用4来代表比较合适。
师:
还有别的方法吗?
生:
我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。
所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。
[师板书:
3+7+2=12(个),12÷3=4(个)]
师:
像这样先把每次投中的个数合起来,然后再平均分给这三次(板书:
合并、平分),能使每一次看起来一样多吗?
生:
能!
都是4个。
师:
能不能代表小刚1分钟投篮的一般水平?
生:
能!
师:
其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是——
生:
使原来几个不相同的数变得同样多。
师:
数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。
(板书课题:
平均数)比如,在这里(出示图),我们就说4是3、4、5这三个数的平均数。
那么,在这里(出示图),哪个数是哪几个数的平均数呢?
在小组里说说你的想法。
生:
在这里,4是3、7、2这三个数的平均数。
师:
不过,这里的平均数4能代表小刚第一次投中的个数吗?
生:
不能!
师:
能代表小刚第二次、第三次投中的个数吗?
生:
也不能!
师:
奇怪,这里的平均数4既不能代表小刚第一次投中的个数,也不能代表他第二次、第三次投中的个数,那它究竟代表的是哪一次的个数呢?
生:
这里的4代表的是小刚三次投篮的平均水平。
生:
是小刚1分钟投篮的一般水平。
(师板书:
一般水平)
师:
最后,该我出场了。
知道自己投篮水平不怎么样,所以正式比赛前,我主动提出投四次的想法。
没想到,他们竟一口答应了。
前三次投篮已经结束,怎么样,想不想看看我每一次的投篮情况?
(师呈现前三次投篮成绩:
4个、6个、5个)
师:
猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想?
生:
他们可能会想:
完了完了,肯定输了。
师:
从哪儿看出来的?
生:
你们看,光前三次,张老师平均1分钟就投中了5个,和***并列第一。
更何况,张老师还有一次没投呢。
生:
我觉得不一定。
万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。
生:
万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了?
师:
情况究竟会怎么样呢?
还是让我们赶紧看看第四次投篮的成绩吧。
(师出示图)
师:
凭直觉,张老师最终是赢了还是输了?
生:
输了。
因为你最后一次只投中1个,也太少了。
师:
不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗?
生:
大约是4个。
生:
我也觉得是4个。
师:
英雄所见略同呀。
不过,第二次我明明投中了6个,为什么你们不估计我最后的平均成绩是6个?
生:
不可能,因为只有一次投中6个,又不是次次都投中6个。
生:
前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。
生:
再说,6个是最多的一次,它还要移一些补给少的。
所以不可能是6个。
师:
那你们为什么不估计平均成绩是1个呢?
最后一次只投中1个呀!
生:
也不可能。
这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不止1个了。
师:
这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均成绩应该比这里最大的数——
生:
小一些。
生:
还要比最小的数大一些。
生:
应该在最大数和最小数之间。
师:
是不是这样呢?
赶紧想办法算算看吧。
[生列式计算,并交流计算过程:
4+6+5+1=16(个),16÷4=4(个)]
师:
和刚才估计的结果比较一下,怎么样?
生:
的确在最大数和最小数之间。
师:
现在看来,这场投篮比赛是我输了。
你们觉得问题主要出在哪儿?
生:
最后一次投得太少了。
生:
如果最后一次多投几个,或许你就会赢了。
师:
试想一下:
如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?
同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。
(生估计或计算,随后交流结果)
生:
如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。
师:
你是通过移多补少得出结论的。
还有不同的方法吗?
生:
我是列式计算的。
4+6+5+5=20(个),20÷4=5(个)。
生:
我还有补充!
其实不用算也能知道是5个。
大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。
平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。
师:
那么,最后一次如果从原来的1个变成9个,平均数又会增加多少呢?
生:
应该增加2。
因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。
所以平均数应增加2个。
生:
我是列式计算的,4+6+5+9=24(个),24÷4=6(个)。
结果也是6个。
二、深化理解,延伸思维
师:
现在,请大家观察下面的三幅图,你有什么发现?
把你的想法在小组里说一说。
(师出示三图,并排呈现)
(生独立思考后,先组内交流想法,再全班交流)
生:
我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。
师:
最后的平均数——
生:
也不同。
师:
看来,要使平均数发生变化,只需要改变其中的几个数?
生:
一个数。
师:
瞧,前三个数始终不变,但最后一个数从1变到5再变到9,平均数——
生:
也跟着发生了变化。
师:
难怪有人说,平均数这东西很敏感,任何一个数据的“风吹草动”,都会使平均数发生变化。
现在看来,这话有道理吗?
(生:
有)其实呀,善于随着每一个数据的变化而变化,这正是平均数的一个重要特点。
在未来的数学学习中,我们将就此作更进一步的研究。
大家还有别的发现吗?
生:
我发现平均数总是比最大的数小,比最小的数大。
三、实际应用,巩固新知
师:
下面这些问题,同样需要我们借助平均数的特点来解决。
瞧,学校篮球队的几位同学正在进行篮球比赛。
我了解到这么一份资料,说李强所在的快乐篮球队,队员的平均身高是160厘米。
那么,李强的身高可能是155厘米吗?
生:
有可能。
师:
不对呀!
不是说队员的平均身高是160厘米吗?
生:
平均身高160厘米,并不表示每个人的身高都是160厘米。
万一李强是队里最矮的一个,当然有可能是155厘米了。
生:
平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。
李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170 厘米。
师:
说得好!
为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。
(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。
生:
姚明!
师:
没错,这是以姚明为首的中国男子篮球队队员。
老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。
这是不是说,篮球队每个队员的身高都是200厘米?
生:
不可能。
生:
姚明的身高就不止2米。
生:
姚明的身高是226厘米。
师:
看来,还真有超出平均身高的人。
不过,既然队员中有人身高超过了平均数——
生:
那就一定有人身高不到平均数。
师:
没错。
据老师所查资料显示,这位队员的身高只有178厘米,远远低于平均身高。
看来,平均数只反映一组数据的一般水平,并不代表其中的每一个数据。
好了,探讨完身高问题,我们再来看看池塘的平均水深。
(师出示图)
师:
冬冬来到一个池塘边。
低头一看,发现了什么?
生:
平均水深110厘米。
师:
冬冬心想,这也太浅了,我的身高是130厘米,下水游泳一定没危险。
你们觉得冬冬的想法对吗?
生:
不对!
师:
怎么不对?
冬冬的身高不是已经超过平均水深了吗?
生:
平均水深110厘米,并不是说池塘里每一处水深都是110厘米。
可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。
所以,冬冬下水游泳可能会有危险。
师:
说得真好!
想看看这个池塘水底下的真实情形吗?
(师出示池塘水底的剖面图)
生:
原来是这样,真的有危险!
师:
看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。
当然,如果不了解平均数,闹起笑话来,那也很麻烦。
这不,前两天,老师从最新的《健康报》上查到这么一份资料。
(师出示:
《2007年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)
师:
可别小看这一数据哦30年前,也就在张老师出生那会儿,中国男性的平均寿命大约只有68岁。
比较一下,发现了什么?
生:
中国男性的平均寿命比原来长了。
师:
是呀,平均寿命变长了,当然值得高兴喽。
可是,一位70岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。
这又是为什么呢?
生:
我想,老伯伯可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。
师:
老伯伯之所以这么想,你们觉得他懂不懂平均数。
生:
不懂!
师:
你们懂不懂?
(生:
懂)既然这样,那好,假如我就是那位70岁的老伯伯,你们打算怎么劝劝我?
生:
老伯伯,别难过。
平均寿命71岁,并不是说每个人都只能活到71岁。
如果有人只活到六十几岁,那么,你不就可以活到七十几岁了吗?
师:
原来,你是把我的幸福建立在别人的痛苦之上呀!
(生笑)不过,还是要感谢你的劝告。
别的同学又是怎么想的呢?
生:
老伯伯,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。
弄不好,你还会长命百岁呢!
师:
谢谢你的祝福!
不过,光这么说,好像还不足以让我彻底放心。
有没有谁家的爷爷或是老太爷,已经超过71岁的?
如果有,那我可就更放心了。
生:
我爷爷已经78岁了。
生:
我爷爷已经85岁了。
生:
我老太爷都已经94岁了。
师:
真有超过71岁的呀!
猜猜看,这一回老伯伯还会再难过吗?
生:
不会了。
师:
探讨完男性的平均寿命,想不想了解女性的平均寿命?
有谁愿意大胆地猜猜看?
生:
我觉得中国女性的平均寿命大约有65岁。
生:
我觉得大约有73岁。
(师呈现相关资料:
中国女性的平均寿命大约是74岁)
师:
发现了什么?
生:
女性的平均寿命要比男性长。
师:
既然这样,那么,如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长?
生:
不一定!
生:
虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。
万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。
师:
说得真好!
走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。
下课!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平均数 优质课 公开 教案 教学 实录