六年级下册数学教案5《数学广角鸽巢问题》人教新课标秋Word文档格式.docx
- 文档编号:22734525
- 上传时间:2023-02-05
- 格式:DOCX
- 页数:12
- 大小:20.29KB
六年级下册数学教案5《数学广角鸽巢问题》人教新课标秋Word文档格式.docx
《六年级下册数学教案5《数学广角鸽巢问题》人教新课标秋Word文档格式.docx》由会员分享,可在线阅读,更多相关《六年级下册数学教案5《数学广角鸽巢问题》人教新课标秋Word文档格式.docx(12页珍藏版)》请在冰豆网上搜索。
重点:
应用“鸽巢原理”解决实际问题。
引导学会把具体问题转化成“鸽巢问题”。
难点:
理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
四、单元学情分析
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。
教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。
能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。
所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。
六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。
教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
五、教法和学法
1、让学生经历“数学证明”的过程。
可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。
通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。
通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。
当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。
教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;
再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。
这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。
“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。
因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。
例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。
因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。
六、单元课时划分:
本单元计划课时数:
6课时
鸽巢问题…………………………………………………1课时
“鸽巢问题”的具体应用…………………………………1课时
练习课……………………………………………………1课时
单元测评…………………………………………………2课时
试卷讲评…………………………………………………1课时
第一课时
课题:
鸽巢问题
教学内容:
教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:
了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
3、情感、态度和价值观:
通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:
引导学生把具体问题转化成“鸽巢问题”。
找出“鸽巢问题”解决的窍门进行反复推理。
教学准备:
课件。
教学过程:
一、情境导入:
二、探究新知:
1.教学例1.(课件出示例题1情境图)
思考问题:
把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?
“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:
通过吧4支铅笔放进3个笔筒中,可以发现:
不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:
“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:
用“枚举法”证明。
方法二:
用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:
用“假设法”证明。
通过以上几种方法证明都可以发现:
把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;
而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
小结:
只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。
如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;
如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……
只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。
(5)归纳总结:
鸽巢原理
(一):
如果把m个物体任意放进n个抽屉里(m>
n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
2、教学例2(课件出示例题2情境图)
(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
(二)如果有8本书会怎样呢?
10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题
(一)。
(1)探究证明。
用数的分解法证明。
把7分解成3个数的和。
把7本书放进3个抽屉里,共有如下8种情况:
由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
用假设法证明。
把7本书平均分成3份,7÷
3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
通过以上两种方法都可以发现:
7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题
(二)。
(1)用假设法分析。
8÷
3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷
3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷
3=b(本)......1(本)或a÷
3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。
鸽巢原理
(二):
古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
三、巩固练习
1、完成教材第70页的“做一做”第1题。
学生独立思考解答问题,集体交流、纠正。
2、完成教材第71页练习十三的1-2题。
四、课堂总结
板书设计:
思考方法:
枚举法、分解法、假设法
n,且n是非零自然数)
教学反思:
第二课时
“鸽巢问题”的具体应用
教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。
在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。
1.情境导入
2、探究新知
1、教学例3(课件出示例3的情境图).
出示思考的问题:
盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球?
学生通过“猜测验证→分析推理”的学习过程解决问题。
(1)猜测验证。
猜测1:
只摸2个球只要举出一个反例就可以推翻这种猜测。
就能保证这2个球验证如:
这两个球正好是一红一蓝时就不能
同色。
满足条件。
猜测2:
摸出5个球,把红、蓝两种颜色看作两个“鸽巢”,因为
肯定有2个球是同验证5÷
2=2...1,所以摸出5个球时,至少有3
色的。
个球是同色的,因此摸出5个球是没必要的。
摸出3个球,把红、蓝两种颜色看作两个“鸽巢”,因为
至少有2个球是同验证3÷
2=1...1,所以摸出3个球时,至少有3
2个是同色的。
综上所述,摸出3个球,至少有2个球是同色的。
(2)分析推理。
根据“鸽巢原理
(一)”推断:
要保证有一个抽屉至少有2个球,分的无图个数失少要比抽屉数多1。
现在把“颜色种数”看作“抽屉数”,结论就变成了“要保证摸出2个同色的球,摸出的球的个数至少要比颜色种数多1”。
因此,要从两种颜色的球中保证摸出2个同色的,至少要摸出3个球。
2、趁热打铁:
箱子里有足够多的5种不同颜色的球,最少取出多少个球才能保证其中一定有2个颜色一样的球?
学生独立思考解决问题,集体交流。
3、归纳总结:
运用“鸽巢原理”解决问题的思路和方法:
(1)分析题意;
(2)把实际问题转化成“鸽巢问题”,弄清“鸽巢”和分放的“鸽子”。
(3)根据“鸽巢原理”推理并解决问题。
1、完成教材第70页的“做一做”的第2题。
(学生独立解答,集体交流。
)
2、完成教材第71页的练习十三的第3-4题。
3、课外拓展延伸题:
一个布袋里有红色、黑色、蓝色的袜子各8只。
每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?
(袜子不分左右)
每个抽屉里放入的物品数
↓
1×
2+1=3(个)
↑
抽屉数
第三课时
练习课
教材71页练习十三的5、6题,及相关的练习题。
进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。
教学重难点
一、复习导入
二、指导练习
(一)基础练习题
1、填一填:
(1)水东小学六年级有30名学生是二月份(按28天计算)出生的,六年级至少有()名学生的生日是在二月份的同一天。
(2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了()个球。
(3)把6只鸡放进5个鸡笼,至少有()只鸡要放进同1个鸡笼里。
(4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有()本书,才可以保证至少有1个同学能借到2本或2本以上的书。
学生独立思考解答,集体交流纠正。
2、解决问题。
(1)(易错题)六
(1)班有50名同学,至少有多少名同学是同一个月出生的?
(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。
一次至少要拿出多少本书?
(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?
(二)拓展延伸题
1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?
教师引导学生分析:
盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)÷
(7-1)=4...2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。
教师引导学生规范解答:
2、一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只?
假设先取5只,全是红的,不符合题意,要继续去;
假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×
2+1=11(只)可以保证每种颜色至少有1只。
3、六
(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。
已知每人得分都是整数,并且班上至少有3人的得分相同。
六
(2)班至少有多少名同学?
因为最高分是100分,最低分是75分,所以学生可能得到的不同分数有100-745+1=26(种)。
完成教材第71页练习十三的5、6题。
(学生独立思考解答问题,集体交流、纠正。
新
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学广角鸽巢问题 六年级 下册 数学教案 数学 广角 问题 新课