青岛版四年级下册数学说课稿四巧手小工匠认识多边形Word格式文档下载.docx
- 文档编号:22673325
- 上传时间:2023-02-05
- 格式:DOCX
- 页数:7
- 大小:18.07KB
青岛版四年级下册数学说课稿四巧手小工匠认识多边形Word格式文档下载.docx
《青岛版四年级下册数学说课稿四巧手小工匠认识多边形Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《青岛版四年级下册数学说课稿四巧手小工匠认识多边形Word格式文档下载.docx(7页珍藏版)》请在冰豆网上搜索。
教学重点:
以探索“三角形三边的关系”为载体,引导学生在实验操作、交流互动的过程中不断积累提升数学活动的基本经验,初步培养学生实验操作、抽象概括等数学探究活动的能力。
教学难点:
学生实验活动操作误差的解释、处理,“三角形三边的关系”的拓展——三角形任意两边之差小于第三边。
(5)教法、学法
教法:
引导学生猜想——验证——发现规律——利用规律解决问题。
学法:
采用自主探究、合作交流的学习方法。
通过学生动手操作、观察得出结论,体现了教学以学生为主体、老师为主导。
(6)说教学过程
一、设疑•导入
1.复习——铺垫
师:
谁来说说什么是三角形?
(由三条线段围成的图形叫做三角形)。
“围成”的意思吗?
(板书:
围:
首尾相连,封闭)
2.猜想——激疑
师出示3根小棒(不出示长度):
猜一猜,这3根小棒能围成一个三角形吗?
说说你是怎么想的?
学生发表自己的想法后,请两个学生到黑板亲自动手演示验证——这3根小棒不能围成一个三角形
你能简单说说这3根小棒为什么不能围成一个三角形?
想一想,3根小棒或3条线段能不能围成一个三角形,与什么有关?
这节课我们就一起来研究“三角形三边的关系”(板书课题)
【设计意图:
让学生初步感知给定的3条线段能否围成一个三角形,与所给定的3条线段的长度有关,为学生进一步学习“三角形三边的关系”指明探索方向。
】
二、实验•感悟
1.操作——感知
为了弄明白三角形三条边之间的关系,老师先让大家做一个实验:
课件出示:
现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?
操作要求:
①分组:
以4人为一小组,一人记录,两人用小棒搭建三角形,小组长负责指导;
②从1号学具袋中拿出操作材料(长5厘米和8厘米的两根小棒、实验结果记录表);
③每次从2号学具袋中取出一根小棒,依次与1号学具袋中的两根小棒围一围,看看是否能围成一个三角形;
④把每次实验结果填写在实验记录表中。
学生分组实验,师巡视指导,适时捕捉学生实验过程中生成的有效资源。
2.反馈——交流
请各小组汇报、展示实验结果。
实验结果记录表(能围成三角形的画“√”,不能围成三角形的画“×
”)
学生已经初步了解三条线段能否围成三角形与所给定的三条线段的长度有关,为了让学生获得更充分的感性认识,为此教师先给学生两根5厘米和3厘米的小棒,让学生通过动手操作得到——当第三根小棒是3、4、5、6、7厘米的时候能围成三角形,当第三根小棒是1、2、8、9、……厘米的时候不能围成三角形,从而为后面的探究活动提供充分的感性材料。
】
3.探索——发现——建构
请大家把刚才实验的结果分成两类,怎么分?
生回答后师出示下表:
表一:
不能围成三角形的。
表二:
能围成三角形的。
(1)探究三根小棒不能围成三角形的原因。
①师:
同学们通过动手实践,发现3厘米、5厘米和1厘米这3根小棒不能围三角形,咱们再来验证一下。
课件演示:
当三根小棒分别是3厘米、5厘米和1厘米的时候,围不成三角形。
为什么围不成呢?
你会用一个数学关系式表示出它们的关系吗?
引导学生得出:
1+3<5,所以围不成,并填入表一。
②师:
下面我们再来验证一下3厘米、5厘米和2厘米这组小棒。
当三根小棒分别是3厘米、5厘米和2厘米的时候,也围不成三角形。
3+2=5,所以围不成,并填入表一。
③师:
3厘米、5厘米和8厘米这组小棒也围不成三角形,课件演示后引导学生得出:
3+5=8,所以围不成,并填入表一。
④师:
3厘米、5厘米和9厘米这组小棒也围不成三角形,课件演示后引导学生得出:
3+5<9,所以围不成,并填入表一。
请大家认真观察表一,说一说什么样的3根小棒或3条线段不能围成三角形?
引导学生说出:
两根小棒(线段)的长度的和小于或等于第三根小棒(线段),这样的3根小棒(线段)不能围成一个三角形。
两条线段之和≤第三条线段→不能围成三角形)
在学生通过实验操作,获得较丰富的感性认识的基础上,引导学生观察比较,并借助课件直观的演示和教师适时、适度的点拨,让学生自主发现不能围成三角形的原因。
(2)探究三角形三边的关系。
①猜想:
两根小棒(线段)之和小于或者等于第三根小棒(线段),这样的三根小棒(线段)不能围成三角形。
请同学们猜一猜,什么情况下三根小棒或三条线段一定能围成一个三角形?
生:
两根小棒(线段)的和大于第三根小棒(线段)→能围成三角形
(生猜出“两根小棒(线段)的和大于第三根小棒(线段)→能围成三角形”后师板书:
两边的和大于第三边→能围成三角形,同时,教师在旁边画上“?
②验证猜想:
你们的猜想对不对呢?
请大家拿出表二,先用数学关系式表示能围成三角形的三根小棒的长度关系,看看谁能从中发现三角形三边的关系,并验证自己的猜想。
生小组讨论、验证,填写表二。
生分组汇报验证过程与结论。
③完善猜想:
质疑:
同学们有没有发现(引导学生观察表一),咱们在动手操作的时候得出3厘米、5厘米和1厘米这3根小棒不能围成一个三角形,可是1+5>3呀,5+2>3呀(师把这两个式子填在表一中),这符合我们刚刚得出的结论啊?
怎么回事呢?
下面先请大家把表一填写完整,再与表二比较,看看有什么新的发现?
同桌可以互相讨论。
生讨论后汇报、交流,引导学生明确:
给定的3条线段或3根小棒,不管哪两条线段(小棒)相加的和都比第三条线段(小棒)大,就能确定这3条线段或3根小棒一定能围成一个三角形。
进一步引导学生抽象出:
三角形任意两边的和大于第三边。
谁能告诉老师,你是怎么理解“任意”的意思?
(三角形中不管哪两条边相加的和都比第三边大)
1+5>3,而1厘米、5厘米和3厘米这3根小棒却围不成三角形,给学生制造矛盾,引发思维冲突,引导学生自觉进行深入、周密的深层次思考,发现只通过一组“两条线段的和>第三条线段”来判断给定的三条线段能否围成三角形是不全面的,进而明确“给定的3条线段,不管哪两条线段相加的和都比第三条线段大,这样的三条线段才能围成一个三角形”,这样学生对“任意”的理解也就水到渠成了。
三、运用•深化
刚才大家通过实验、探索,发现了三角形三条边的关系。
1.独立完成课本P86第4题。
刚才同学们通过自己的探索,发现了“三角形任意两边的和一定大于第三边”这一数学规律,表现得非常棒,现在你能运用这个结论来判断给出的三条边能否围成一个三角形吗?
逐题出示:
生汇报,并说明判断的方法,然后课件演示验证。
你们都是这样判断的吗?
有没有更快捷的方法呢?
能说说为什么吗?
(生:
我是先找出较短的两条边比较它们的与剩下的第三条边的大小,如果和大一些,能拼成三角形;
如果和相等或小一些,则不能拼成三角形,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边。
)
是的,所以我们在判断三条边能否围成三角形时往往只要看较短的两条边的和能否大于三条边,这种方法既快又对。
设计意图:
在学生对“三角形任意两边的和大于第三边”有了较深刻理解的基础上,进一步引导学生优化判断方法,既有利于学生深化对新知的理解,完善认知结构,同时在数学活动中有效地渗透“优化”思想,有利于培养学生追求“最优化”的解决问题的方法、策略的意识和思维品质。
四、拓展•丰实
再次出示3根小棒(标明长度):
师引导学生换掉其中一根(如把最短的换掉),看看换成多长的才能围成一个三角形,并进一步引导学生悟出其取值范围,从而深化对三角形三边关系的理解。
让学生在不断尝试的过程中感悟第三边的取值范围,拓展三角形三边关系的外延,加深对三角形三边关系的理解。
五、回顾•反思
通过这节课的学习你有什么收获?
还有哪些不明白的?
5.说板书
三角形三边的关系
两条线段之和≤第三条线段→不能围成三角形
两条线段之和>第三条线段→能围成三角形
用数学符号和数学语言相结合,让给学生体会符号语言的妙处。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 青岛 四年级 下册 数学 说课稿四 巧手 工匠 认识 多边形