数学学科数学抽象核心素养的教学策略与实践专题研讨优秀课例“函数单调性”点评分析(评课).pps
- 文档编号:2250219
- 上传时间:2022-10-28
- 格式:PPS
- 页数:24
- 大小:2.04MB
数学学科数学抽象核心素养的教学策略与实践专题研讨优秀课例“函数单调性”点评分析(评课).pps
《数学学科数学抽象核心素养的教学策略与实践专题研讨优秀课例“函数单调性”点评分析(评课).pps》由会员分享,可在线阅读,更多相关《数学学科数学抽象核心素养的教学策略与实践专题研讨优秀课例“函数单调性”点评分析(评课).pps(24页珍藏版)》请在冰豆网上搜索。
数学数学学科数学抽象数学抽象数学抽象数学抽象核心素养的教学策略与实践专题“数学归纳法”点评分析“数学归纳法”点评分析李大永教师的教学生的学数学素养数学素养数学理解教育理解数学理解教育理解学习理解认知基础学习理解认知基础数学活动数学活动课堂氛围课堂氛围数学素养的教学策略产生于对数学素养内涵的深刻理解;一、关于数学核心素养的教学策略一、关于数学核心素养的教学策略数学核心素养是具有数学核心素养是具有数学基本特征数学基本特征的、的、适应个人终身适应个人终身发展和社会发展需要的发展和社会发展需要的人的人的关键能力关键能力与与思维品质思维品质。
数学核心素养数学核心素养不是不是指具体的知识与技能,也不是一般指具体的知识与技能,也不是一般意义上的数学能力。
它是学生通过数学的学习、反思意义上的数学能力。
它是学生通过数学的学习、反思、积累、孕育、升华,并获得发展的,是、积累、孕育、升华,并获得发展的,是面对复杂的面对复杂的、不确定的陌生情境和问题时、不确定的陌生情境和问题时,能够,能够综合运用特定的综合运用特定的数学观念、知识、技能、思维模式、探究技能数学观念、知识、技能、思维模式、探究技能等,用等,用积极的态度、科学的精神去分析问题、提出问题、解积极的态度、科学的精神去分析问题、提出问题、解决问题、交流结果的过程中表现出来的决问题、交流结果的过程中表现出来的综合性品质综合性品质。
数学核心素养的内涵数学核心素养的内涵数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。
主要包括:
从数量与数量关系、图形与图形关的思维过程。
主要包括:
从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系;从事物的具体背景系中抽象出数学概念及概念之间的关系;从事物的具体背景中中抽象出一般规律和结构抽象出一般规律和结构;用数学语言予以表征。
;用数学语言予以表征。
主要表现在:
主要表现在:
形成数学概念和规则;形成数学概念和规则;形成数学命题和模型;形成数学命题和模型;形成数学方法与思想;形成数学方法与思想;形成数学结构与体系。
形成数学结构与体系。
逻辑推理逻辑推理是指从一些事实和命题出发,依据规则推出其逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的思维过程。
主要包括两类:
一类是从特殊到一他命题的思维过程。
主要包括两类:
一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要是演绎。
到特殊的推理,推理形式主要是演绎。
主要表现在:
主要表现在:
发现和提出命题;发现和提出命题;掌握推理的基本形式和规则;掌握推理的基本形式和规则;探索和表述论证的过程探索和表述论证的过程;构建命题体系;构建命题体系;有逻辑地表达与交流。
有逻辑地表达与交流。
数学素养的教学策略产生于对数学素养内涵的深刻理解;数学思维活动是数学素养形成与发展的核心过程性要素;一、关于数学核心素养的教学策略一、关于数学核心素养的教学策略数学思维活动的本质经验材料的数学组织数学材料的逻辑组织数学理论的应用实践以抽象概括为主要思维活动形式的获得对象在“量”、“形”、“关系”、“结构”等方面的本质刻画形成数学材料以推理与证明为主要思维活动形式的获得数学材料在“关系”与“结构”等方面的本质刻画,形成数学知识模型与系统以构建运用数学模型为主要思维活动形式的发现问题、描述问题、解释说明、解决问题等为目的的数学实践数学素养的教学策略产生于对数学素养内涵的深刻理解;数学思维活动是数学素养形成与发展的核心过程性要素;学习主体在数学思维活动中的经历、体验、反思中产生的情感共鸣是数学素养形成与发展的催化剂;一、关于数学核心素养的教学策略一、关于数学核心素养的教学策略人类的本质直观本质直观本质直观本质直观是先验的,是人的基因和大脑这一物质基础决定的先天具有的。
所以每一个孩子每一个孩子都存在着本质直观的潜能。
都存在着本质直观的潜能。
但是,先天的存在和后天的经验有机结合才能形先天的存在和后天的经验有机结合才能形成人的强大的成人的强大的直观能力直观能力。
史宁中指出:
“保持并放大保持并放大孩子学习和创造的天孩子学习和创造的天性”性”应作为教育的基本原则二、如何理解数学学习和教学?
二、如何理解数学学习和教学?
直观不是一成不变的,而是随着经验的积累其功能可以逐渐加强的。
数学知识的形成依赖于直观,数学知识的确立依赖于推理。
二、如何理解数学学习和教学?
二、如何理解数学学习和教学?
明晰性、确定性境遇性、非显性、直觉性经历数学活动体验经验共鸣反思沉淀观念与思想类化抽象推理程序与技能概念与原理策略与方法直观或直觉观察试验归纳类比概括猜想判断推理运算明晰明晰隐晦隐晦本质直观激活、唤醒三、如何理解该数学教学内容?
三、如何理解该数学教学内容?
单调性是函数的重要性质,它是函数性质中的核心概念。
对这一概念内涵的理解是一个长期的过程,贯穿在从初中到高中乃至大学的数学课程之中;函数性质反映了函数关系中的两个变量各自变化规律之间的联系表现出的特性;高中函数单调性的概念具有丰富的数学思维价值。
这一概念的形成、发展、明晰化过程就是一个从感性到理性、从具体直观到一般抽象的认知过程,概念的形成发展体现出数学抽象和逻辑推理的数学思维特征。
因此,这一概念的学习活动是落实发展学生数学抽象素养和逻辑推理素养的好机会。
从整体角度理解函数单调性概念函数单调性函数单调性函数概念函数概念函数概念函数概念导数导数导数导数初中数学:
内容与表达式初中数学:
内容与表达式初中数学:
内容与表达式初中数学:
内容与表达式全称量全称量词词全称量全称量词词极值极值最值最值值域值域极值极值最值最值值域值域初等函数:
初等函数:
指、对、幂指、对、幂、三角函数、三角函数等等初等函数:
初等函数:
指、对、幂指、对、幂、三角函数、三角函数等等不等式不等式不等式不等式函数单调性在数学整体中的重要地位函数单调性在数学整体中的重要地位函数变化趋势(单调性)函数变化趋势(单调性)x增大y随之增大12xx()()12fxfx微观微观化化静态静态化化抽象抽象化化符号符号化化任取,12xx化静为动化静为动来自于图来自于图象的直观象的直观感知感知来自于图来自于图象的直观象的直观感知感知过程过程(操作意操作意义)义)对象(结构意对象(结构意义)义)过程过程(操作意操作意义)义)对象(结构意对象(结构意义)义)对应函数性质的本质:
函数()fx的性质自变量的关系对应相应因变量的关系()fx为增函数:
12,xxD,12xx12()()fxfx()fx为减函数:
12,xxD,12xx12()()fxfx()fx为偶函数:
12,xxD,120xx12()()0fxfx()fx为奇函数:
12,xxD,120xx12()()0fxfx四、这节课带给我们哪些启示和思考?
四、这节课带给我们哪些启示和思考?
本节课的特征:
教师一直致力于教学生学会数本节课的特征:
教师一直致力于教学生学会数学抽象与推理,始终把培养学生数学抽象和逻学抽象与推理,始终把培养学生数学抽象和逻辑推理的素养作为自己教学行为的指南。
辑推理的素养作为自己教学行为的指南。
65.554.543.532.521.510.5-0.5-1-3-2-11234561.210.80.60.40.2-0.2-0.4-0.6-0.8-1-1.2-1.4-0.50.511.522.53问题问题11:
观察第一组图像,寻找共同特征和不同之处:
观察第一组图像,寻找共同特征和不同之处回忆你在初中所学的函数,举例子说明哪一个函数图象回忆你在初中所学的函数,举例子说明哪一个函数图象与这组图象具备共同特征与这组图象具备共同特征问题问题22:
回顾初中知识,是如何描述函数的变化趋势的?
:
回顾初中知识,是如何描述函数的变化趋势的?
借助图像回顾一次函数借助图像回顾一次函数借助图像回顾一次函数借助图像回顾一次函数yy随随xx的增大而增大的增大而增大yy随随xx的增大而增大的增大而增大图形语言图形语言图形语言图形语言自然语言自然语言自然语言自然语言问题问题33:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?
画变化趋势?
65.554.543.532.521.510.5-0.5-1-3-2-11234561.210.80.60.40.2-0.2-0.4-0.6-0.8-1-1.2-1.4-0.50.511.522.53自然语言的描述自然语言的描述符号语言的描述符号语言的描述问题问题33:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?
画变化趋势?
12xx()()12fxfx任取任取,12xxx增大增大y随之增大随之增大抽抽象象化化符符号号化化思考题思考题问题问题33:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?
画变化趋势?
如何让学生感受到用量化方法刻画如何让学生感受到用量化方法刻画函数变化趋势的价值性知识?
即数函数变化趋势的价值性知识?
即数学抽象对于数学的价值与功能?
学抽象对于数学的价值与功能?
12xx()()12fxfx任取任取,12xxx增大增大y随之增大随之增大抽抽象象化化符符号号化化思考题思考题问题问题33:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻:
这种形象的描述来源于对函数图象的观察,可否用量化的方法刻画变化趋势?
画变化趋势?
如何让学生感受到用量化方法刻画如何让学生感受到用量化方法刻画函数变化趋势的价值性知识?
即数函数变化趋势的价值性知识?
即数学抽象对于数学的价值与功能?
学抽象对于数学的价值与功能?
12xx()()12fxfx任取任取,12xxx增大增大y随之增大随之增大抽抽象象化化符符号号化化1()()(1,)fxxxfx=+能通过做出函数的图象来证明函数在上单调递增吗?
改进改进:
y=f(x)y=g(x)促进概念的精细化促进概念的精细化谢谢
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 学科 抽象 核心 素养 教学策略 实践 专题研讨 优秀 函数 调性 点评 分析 评课