中位线经典习题及答案.docx
- 文档编号:2248952
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:44
- 大小:332.92KB
中位线经典习题及答案.docx
《中位线经典习题及答案.docx》由会员分享,可在线阅读,更多相关《中位线经典习题及答案.docx(44页珍藏版)》请在冰豆网上搜索。
中位线经典习题及答案
中位线经典习题及答案
6.用反证法证明命题“在Rt△ABC中,若∠A=90°,则∠B≤45°或∠C≤45°“时,应先假设( )
A.
∠B>45°,∠C≤45°
B.
∠B≤45°,∠C>45°
C.
∠B>45°,∠C>45°
D.
∠B≤45°,∠C≤45°
7.用反证法证明“若a⊥c,b⊥c,则a∥b”,第一步应假设( )
A.
a∥b
B.
a与b垂直
C.
a与b不一定平行
D.
a与b相交
8.能证明命题“x是实数,则(x﹣3)2>0”是假命题的反例是( )
A.
x=4
B.
x=3
C.
x=2
D.
x=15
9.下列说法正确的是( )
A.
等腰三角形的角平分线、中线、高线互相重合
B.
面积相等的两个三角形一定全等
C.
用反证法证明命题“三角形中至少有一个角不大于60°”的第一步是“假设三角形中三个角都大于60°”
D.
反比例函数y=中函数值y随自变量x的增大一定而减小
10.下列命题宜用反证法证明的是( )
A.
等腰三角形两腰上的高相等
B.
有一个外角是1200的等腰三角形是等边三角形
C.
两条直线都与第三条直线平行,则这两条直线互相平行
D.
全等三角形的面积相等
二.填空题(共4小题)
11.(2013•烟台)如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 _________ .
12.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为 _________ .
13.(2012•枣庄)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为 _________ .
14.(2011•柳州)如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间的距离等于23米,则A、C两点间的距离 _________ 米.
三.解答题(共16小题)
15.(2013•永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(1)求证:
BN=DN;
(2)求△ABC的周长.
16.(2012•湘西州)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.
(1)求∠A的度数;
(2)求EF的长.
17.(2005•乌鲁木齐)如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:
四边形DECF为平行四边形.
18.(2004•苏州)已知:
如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.
(1)求证:
DP=PE;
(2)若D为AC的中点,求BP的长.
19.(2013•镇江)如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.
(1)求证:
△ABE≌△DCF;
(2)试证明:
以A、F、D、E为顶点的四边形是平行四边形.
20.(2013•梧州)如图,已知:
AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:
四边形BECF是平行四边形.
21.(2013•鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:
(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.
22.(2011•天水)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?
请说明理由.
23.(2010•东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:
四边形ADFE是平行四边形.
24.(2006•镇江)已知:
如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO.
求证:
四边形ABCD是平行四边形.
25.(2006•湛江)如图,点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,试判断四边形EFGH的形状,并证明你的结论.
26.证明:
在一个三角形中,至少有一个内角小于或等于60度.
27.请用反证法证明:
如果两个整数的积是偶数,那么这两个整数中至少有一个是偶数.
28.判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明.
(1)有一个角是60°的等腰三角形是等边三角形.
(2)有两个角是锐角的三角形是锐角三角形.
29.(2013•南充)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.
求证:
OE=OF.
30.(2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
(1)求证:
△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
2014年4月王强的初中数学组卷
参考答案与试题解析
一.选择题(共10小题)
1.(2013•铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为( )
A.
2cm
B.
7cm
C.
5cm
D.
6cm
考点:
三角形中位线定理.2619177
分析:
由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
解答:
解:
如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB,
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm,
故选D.
点评:
解决本题的关键是利用中点定义和中位线定理得到新三角形各边长与原三角形各边长的数量关系.
2.(2013•怀化)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是( )
A.
18米
B.
24米
C.
28米
D.
30米
考点:
三角形中位线定理.2619177
分析:
根据D、E是OA、OB的中点,即DE是△OAB的中位线,根据三角形的中位线定理:
三角形的中位线平行于第三边且等于第三边的一半,即可求解.
解答:
解:
∵D、E是OA、OB的中点,即CD是△OAB的中位线,
∴DE=AB,
∴AB=2CD=2×14=28m.
故选C.
点评:
本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.
3.(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
A.
4
B.
3
C.
2
D.
1
考点:
三角形中位线定理;全等三角形的判定与性质.2619177
专题:
压轴题.
分析:
连接DE并延长交AB于H,由已知条件可判定△DCE≌△HAE,利用全等三角形的性质可得DE=HE,进而得到EF是三角形DHB的中位线,利用中位线性质定理即可求出EF的长.
解答:
解:
连接DE并延长交AB于H,
∵CD∥AB,
∴∠C=∠A,∠CDE=∠AHE,
∵E是AC中点,
∴AE=CE,
∴△DCE≌△HAE(AAS),
∴DE=HE,DC=AH,
∵F是BD中点,
∴EF是△DHB的中位线,
∴EF=BH,
∴BH=AB﹣AH=AB﹣DC=2,
∴EF=1.
故选D.
点评:
本题考查了全等三角形的判定和性质、三角形的中位线的判定和性质,解题的关键是连接DE和AB相交构造全等三角形,题目设计新颖.
4.(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为( )
A.
B.
C.
3
D.
4
考点:
三角形中位线定理;等腰三角形的判定与性质.2619177
专题:
压轴题.
分析:
首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
解答:
解:
∵BQ平分∠ABC,BQ⊥AE,
∴△BAE是等腰三角形,
同理△CAD是等腰三角形,
∴点Q是AE中点,点P是AD中点(三线合一),
∴PQ是△ADE的中位线,
∵BE+CD=AB+AC=26﹣BC=26﹣10=16,
∴DE=BE+CD﹣BC=6,
∴PQ=DE=3.
故选C.
点评:
本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.
5.(1997•海南)用反证法证明命题:
“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是( )
A.
假定CD∥EF
B.
假定CD不平行于EF
C.
已知AB∥EF
D.
假定AB不平行于EF
考点:
反证法.2619177
分析:
根据要证CD∥EF,直接假设CD不平行于EF即可得出.
解答:
解:
∵用反证法证明命题:
如果AB∥CD,AB∥EF,那么CD∥EF.
∴证明的第一步应是:
从结论反面出发,假设CD不平行于EF.
故选:
B.
点评:
此题主要考查了反证法的第一步,根据题意得出命题结论的反例是解决问题的关键.
6.用反证法证明命题“在Rt△ABC中,若∠A=90°,则∠B≤45°或∠C≤45°“时,应先假设( )
A.
∠B>45°,∠C≤45°
B.
∠B≤45°,∠C>45°
C.
∠B>45°,∠C>45°
D.
∠B≤45°,∠C≤45°
考点:
反证法.2619177
分析:
用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.
解答:
解:
用反证法证明命题“在Rt△ABC中,若∠A=90°,则∠B≤45°或∠C≤45°”时,
应先假设∠B>45°,∠C>45°.
故选:
C.
点评:
此题主要考查了反证法,注意逆命题的与原命题的关系是解题关键.
7.用反证法证明“若a⊥c,b⊥c,则a∥b”,第一步应假设( )
A.
a∥b
B.
a与b垂直
C.
a与b不一定平行
D.
a与b相交
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中位线 经典 习题 答案