Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradiaWord文档格式.docx
- 文档编号:22416376
- 上传时间:2023-02-04
- 格式:DOCX
- 页数:13
- 大小:26.61KB
Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradiaWord文档格式.docx
《Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradiaWord文档格式.docx》由会员分享,可在线阅读,更多相关《Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradiaWord文档格式.docx(13页珍藏版)》请在冰豆网上搜索。
aCollegeofChemistryandChemicalEngineering,NorthwestNormalUniversity,Lanzhou730070,China
bKeyLaboratoryofEco-Environment-RelatedPolymerMaterials,MinistryofEducationofChina,KeyLaboratoryofGansuPolymerMaterials,Lanzhou730070,China
*Correspondingauthor.Tel:
+869317972677;
Fax:
+869317975521.
E-mailaddresses:
wangqizhao@;
qizhaosjtu@(Q.Wang)
wangfplz@(F.Wang)
ABSTRACT
PhotocatalystBiOClmodifiedbypolyaniline(PANI/BiOCl)wassynthesizedviaafacilechemisorptionsmethod.X-raydiffraction(XRD),Scanningelectronmicroscopy(SEM)andUV-visdiffusereflectancespectroscopy(DRS)wereemployedtostudythephasestructure,morphologyandopticalpropertiesofthesamples.TheresultsshowedthatthePANIincreasedabsorptionintensityandabsorptionbandsofthepureBiOCl.Photodegradationofmethylorange(MO)onthesampleswereinvestigatedundervisiblelightirradiationand7wt%PANI/BiOClcompositeshowedthehighestphotocatalyticactivity.TheenhancedphotocatalyticperformancecouldbeattributedtoPANI/BiOClcompositesandthesynergisticeffectbetweenPANIandBiOCl.Accordingtoexperimentalresults,thepossiblephotocatalyticmechanismofthePANI/BiOClphotocatalystswasproposed.
Keywords:
PANI/BiOCl;
Photocatalysis;
Synergisticeffect;
photodegradation
1.Introduction
SinceFujishimaandHondareportedTiO2photochemicalelectrodeforsplittingwaterin1972[1],thestudyonthedevelopmentofphotocatalystsusedfortheremovalofenvironmentalpollutantsandtheutilizationofsolarenergyhasattractedincreasingattention[2].Duringthelasttwodecades,besidesthefocusedworkonTiO2modifications,manyeffortsweremadetodevelopothernovelefficientphotocatalysts.Thereportedphotocatalystsystems,tothebestofourknowledge,canbegenerallyclassifiedasoxides[3],sulfides[4],oxysulfides[5],nitrides[6]andoxynitride[7].Recently,Bi-basedoxychlorides(BiOCl)havedrawnmuchattentionfortheirpotentialapplicationinthetreatmentofcontaminantsinwaterandenvironmental[8-9].BiOClwithawidebandgap(3.19-3.60eV)canonlyabsorbultravioletlight,whichismerelyabout3%ofthesolarenergyspectrum[10-12].TheintrinsicpropertyofBiOCllimitsitsefficientutilizationofsolarenergyaswellasphotocatalyticactivity.InordertoextendthephotoresponseofBiOCltothevisibleregion,manymodificationapproacheshavebeenproposed,suchasmetaldoping(Mn/BiOCl[13]).ButmanyattemptshavebeenadoptedtoenhanceitsactivitybymodifyingBiOClwithothersemiconductorsthatcanabsorbvisiblelight,suchas,Ag/AgCl/BiOCl[14],Ag/AgX/BiOX[15],WO3/BiOCl[16],Fe3O4/BiOCl[17],Bi2S3/BiOCl[18],Bi2O3/BiOCl[19],BiOCl/BiOI[20]andBiOI/BiOCl[21].
Recently,theconjugatedpolymerswithextendingπ-conjugatedelectronsystemssuchaspolyaniline,polypyrrole,polythiopheneandtheirderivativeshaveshowngreatpromisingduetotheirwideabsorptionregioninthevisiblelightrange,highmobilityofchargecarriersandexcellentstability[22].Furthermore,comparedwithdopednoblemetal,PANIisrelativelycheapandeasilysynthesized.SomestudieshavebeenpublishedonthecombinationofconductivepolymerandTiO2toimprovetheirphotocatalyticperformanceofUVandvisiblelight[23-26].
Inourpresentwork,thenovelphotocatalystsaredevelopedbetweenBiOClandPANItomakeefficientuseofvisiblelight.PureBiOClandPANIshowedverylowphotocatalyticactivityundervisiblelight,theirnanocompositesinduceddecompositionofmethylorange(MO).ThemechanismwithPANI/BiOClphotocatalystshasbeenproposed.BothPANI/BiOClcouldabsorbvisiblelightandthesynergisticeffectremarkablyenhancedphotocatalyticactivity.
2.Experimental
2.1PreparationofthePANInanoparticle
Allreagents(SinopharmChemicalReagentCo.,Ltd)wereofanalyticgradeandusedwithoutfurthertreatment.5.705gofammoniumperoxydisulfatewasdissolvedinto50mLofwaterandwasaddedinto2.328gofanilinemonomerbythedropwise,whichconstantlystirringatlowtemperature.Thepolymerizationwasallowedtoproceedfor24handthegreenish-blackprecipitatedofpolyanilinewasobtained.Theprecipitateswerecentrifuged,andthenwashedwithdistilledwaterandethanol.Theresultingpolyanilinewasfinallydriedundervacuumovenfor12hat60℃.
2.2PreparationoftheBiOClsample
BiOClpowderwassynthesizedbyahydrolysismethod.Bi2O3wasdissolvedinexcessiveconcentratedhydrochloricacidtoreceiveatransparentBiCl3-HClaqueous.WhenthepHvalueofthesolutionwasadjustedbetween2and3withammonia,thewhitecolloidappeared.Afterthecolloidwasheatedat40℃forhalfanhour,apowderyBiOClmaterialconsistingofsmallplate-likecrystalswasobtained.Theprecipitateswerewashedseveraltimeswithwaterandethanoluntilnochloridionwasleftinthesolution,andthendriedat60℃inovenfor6hbeforefurthercharacterization[27].
2.3PreparationofthePANI/BiOClphtocatalysts
ThePANI/BiOClphotocatalystswerepreparedasfollows:
PANIwasdispersedintetrahydrofuran(THF)toobtainaconcentrationof0.45g/L-1solution,andanamountofBiOClpowderwasaddedto100mLoftheabovesolutionandthenstirredfor24h.Theprecipitatewascentrifugedandwashedseveraltimesbydistilledwaterandethanol,andthentransferredtooventodryat80°
Cfor6h.Accordingtothismethod,differentweightratiosofPANI/BiOClphotocatalystsfrom1wt%to9wt%weresynthesized.
2.4Characterizationofthephtocatalysts
X-raydiffractionpatterns(XRD)ofthesamplespreparedwererecordedonaRigakuX-raydiffractometerD/MAX-2200/PCequippedwithCuKαradiation(40kV,20mA).ThestructuralinformationofthesampleswasmeasuredbyFouriertransformspectrophotometer(FT-IR,Vertex70,Bruker)withKBrasthereferencesample.ThesurfacemorphologyofproductswasobservedusingJSM-6701Ffieldemissionscanningelectronmicroscope(FE-SEM).UV-visibleDiffuseReflectancespectroscopy(DRS)ofpowdersampleswascarriedoutatroomtemperatureusingaShimadzuModel2550UV-visiblespectrophotometeroverawavelengthrangeof200-800nm.ThereflectancespectraweretransformedtoabsorptionintensitybyusingKubelka-Munkmethod.Thephotoluminescence(PL)spectraweremeasuredatroomtemperatureunder390nmexcitationwavelength(PE,LS-55).
2.5Measurementofphotocatalyticactivity
Thephotocatalyticactivitiesofthesampleswereevaluatedbythedegradationofmethylorange(MO)inasinglecompartmentphotoreactor.Photocatalyticreactionwaspreformedinaquartztubereactor.0.05gofPANI/BiOClphotocatalystswereplacedintheaqueoussolutionofMO(50mL,10mg/L).Ahighpressurexenonshortarclamp(CHF-XM35-500W,BeijingChangtuoCo.)wasservedasthevisiblelightsource,aglassfilter(ZUL0400,AsahiSpectraCo.)wasaddedtoallowvisiblelight(λ>
420nm)topassthrough.Thesuspensionswerestirredfor1htoreachadsorption-desorptionequilibriumofMOmoleculesonthesurfaceofcatalyst.Duringthephotoreaction,about4mLofsuspensionwascollectedatgiventimeintervalsandcentrifugedtoremovetheparticles.TheconcentrationofMOwasdeterminedbyrecordingthevariationsofsupernatantat464nmusingUV-visspectrophotometer(TU–1901,BeijingPgeneral).
3.ResultsandDiscussion
3.1.Crystalstructureandmorphology
Fig.1showstheXRDpatternsoftheBiOClandPANI/BiOClphotocatalysts.ThehydrolysissynthesizedBiOClwascrystallizedintoastandardtetragonalstructure(JCPDS06-0249).Themaindiffractionpeakpositionsoftheobtainedproductsappearat11.98º
24.10º
and33.45º
whichcorrespondtothe(001),(101)and(102)crystalfacesofBiOCl,respectively.ThecrystallatticeparametersofBiOClwerecalculatedtobea=b=0.3891Å
,c=0.7369Å
whichwereconsistentwithliterature[27].TheXRDpatternsofPANI/BiOClphotocatalystshardlychangedinpeakpositionsandshapescomparedwiththeBiOCl,indicatingthatthemodificationwithPANIdidnotinfluencethelatticestructureofBiOCl.Inaddition,thepeakintensitiesoftheBiOCldecreasedgraduallyuponenhancingthePANIcontents,soitcouldbeascribedtothedecreasedparticlesizeandincreaseddispersityoftheBiOClnanoparticles.
Fig.2showstheSEMimagesoftheas-preparedPANI,BiOCland7wt%PANI/BiOClrespectively.AsshowninFig.2A,theSEMimageofPANIrevealedthattheas-preparedsamplesconsistedofamorphousparticlesandthediameterofthemicrosphereswasaround100nmto300nm.InFig.2B,itcouldbeseenclearlythattheBiOClwasdominatedwithsurfacesmoothplatesandthethicknessisabout50nm.InFig.2C,the7wt%PANI/BiOClwasmainlycomposedofmanyplateswithmanysmallparticlesdispersiononthesurfaceofplates.
Fig.3showstheFT-IRspectraofPANI,BiOCland7wt%PANI/BiOCl.Thestrongpeaksatlowfrequency(about500cm−1)wereattributedtotheBi-OvibrationofchemicalbondsinBiOCl[28].ThespectraofPANImainlyincludedthecharacteristicabsorptionbandsasfollowing:
1554cm−1(C=Cstretchingmodeforthequinonoidunit),1479cm−1(C=Cstretchingmodeforbenzenoidunit),1298cm−1and1242cm−1(C-Nstretchingmodeofbenzenoidunit)and1122cm−1(aplanebendingvibrationofC-H)[29].Forthespectrumof7wt%PANI/BiOCl,thecharacteristicpeaksofPANIat1554cm−1,1479cm−1,1298cm−1,1242cm−1and1122cm−1alsoappeare
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Photodegradation of methyl orange with PANImodified BiOCl photocatalyst under visible light irradia
链接地址:https://www.bdocx.com/doc/22416376.html