人教版初一上册数学知识点总结有理数Word格式文档下载.docx
- 文档编号:22367903
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:10
- 大小:21.12KB
人教版初一上册数学知识点总结有理数Word格式文档下载.docx
《人教版初一上册数学知识点总结有理数Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《人教版初一上册数学知识点总结有理数Word格式文档下载.docx(10页珍藏版)》请在冰豆网上搜索。
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
或;
(3);
;
(4)|a|是重要的非负数,即|a|≥0;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:
乘积为1的两个数互为倒数;
0没有倒数;
若ab=1a、b互为倒数;
若ab=-1a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:
倒数等于本身的数:
1,-1
绝对值等于本身的数:
正数和0
平方等于本身的数:
0,1
立方等于本身的数:
0,1,-1.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:
a+b=b+a;
(2)加法的结合律:
(a+b)+c=a+(b+c).
9.有理数减法法则:
减去一个数,等于加上这个数的相反数;
即a-b=a+(-b).
10有理数乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11有理数乘法的运算律:
(1)乘法的交换律:
ab=ba;
(2)乘法的结合律:
(ab)c=a(bc);
(3)乘法的分配律:
a(b+c)=ab+ac.(简便运算)
12.有理数除法法则:
除以一个数等于乘以这个数的倒数;
零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;
负数的偶次幂是正数;
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;
若a2+|b|=0a=0,b=0;
(4)据规律底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:
把一个大于10的数记成a×
10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.混合运算法则:
先乘方,后乘除,最后加减;
注意:
不省过程,不跳步骤。
18.特殊值法:
是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第二章整式的加减
1.单项式:
表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:
单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:
几个单项式的和叫多项式.
4.多项式的项数与次数:
多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
5..
6.同类项:
所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:
系数相加,字母与字母的指数不变.
8.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;
若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:
一找:
(划线);
二“+”(务必用+号开始合并)三合:
(合并)
10.多项式的升幂和降幂排列:
把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).
第三章一元一次方程
1.等式:
用“=”号连接而成的式子叫等式.
2.等式的性质:
等式性质1:
等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:
等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:
含未知数的等式,叫方程.
4.方程的解:
使等式左右两边相等的未知数的值叫方程的解;
“方程的解就能代入”!
5.移项:
改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:
ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去分母----------同乘(不漏乘)最简公分母
去括号----------注意符号变化
移项----------变号(留下靠前)
合并同类项--------合并后符号
系数化为1---------除前面
10.列一元一次方程解应用题:
(1)读题分析法:
…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:
“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:
…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题:
距离=速度时间;
(2)工程问题:
工作量=工效工时;
工程问题常用等量关系:
先做的+后做的=完成量
(3)顺水逆水问题:
顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
顺水逆水问题常用等量关系:
顺水路程=逆水路程
(4)商品利润问题:
售价=定价,;
利润问题常用等量关系:
售价-进价=利润
(5)配套问题:
(6)分配问题
第四章图形初步认识
(一)多姿多彩的图形
立体图形:
棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:
三角形、四边形、圆等.
主(正)视图---------从正面看
2、几何体的三视图侧(左、右)视图-----从左(右)边看
俯视图---------------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.
(2)能根据三视图描述基本几何体或实物原型.
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.
4、点、线、面、体
(1)几何图形的组成
点:
线和线相交的地方是点,它是几何图形最基本的图形.
线:
面和面相交的地方是线,分为直线和曲线.
面:
包围着体的是面,分为平面和曲面.
体:
几何体也简称体.
(2)点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
图形直线射线线段
端点个数无一个两个
表示法直线a
直线AB(BA)射线AB线段a
线段AB(BA)
作法叙述作直线AB;
作直线a作射线AB作线段a;
作线段AB;
连接AB
延长叙述不能延长反向延长射线AB延长线段AB;
反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线.
简单地:
两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:
把一条线段平均分成两条相等线段的点.
图形:
AMB
符号:
若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.
6、线段的性质
两点的所有连线中,线段最短.简单地:
两点之间,线段最短.
7、两点的距离
连接两点的线段长度叫做两点的距离.
8、点与直线的位置关系
(1)点在直线上
(2)点在直线外.
(三)角
1、角:
由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β锐角直角钝角平角周角
范围0∠β90°
∠β=90°
90°
∠β180°
∠β=180°
∠β=360°
5、角的比较方法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°
的倍数的角,在0~180°
之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
8、角的平线线
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.
9、互余、互补
(1)若∠1+∠2=90°
,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1+∠2=180°
,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.
(3)余(补)角的性质:
等角的补(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:
乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:
“这就是雷声隆隆。
”一会儿下起了大雨,我问:
“雨下得怎样?
”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:
“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?
”;
《论语》中的“有酒食,先生馔”;
《国策》中的“先生坐,何至于此?
”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?
曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
更多中考信息》》》
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初一 上册 数学 知识点 总结 有理数