李万军论文.docx
- 文档编号:2236555
- 上传时间:2022-10-28
- 格式:DOCX
- 页数:12
- 大小:29.07KB
李万军论文.docx
《李万军论文.docx》由会员分享,可在线阅读,更多相关《李万军论文.docx(12页珍藏版)》请在冰豆网上搜索。
李万军论文
目录
摘要2
第一章、MH—NI电池的发展3
1.1MH—NI电池的性能及其优越性3
1.2MH—NI电池的发展历史3
第二章、MH—Ni电池特性4
2.1MH—Ni电池的原理4
2.2MH—Ni电池的性能5
2.2.1贮氢合金的吸放氢机理.5
2.2.2MH—Ni电池的电化学容量.5
2.2.3MH—Ni电池的自放电.5
2.2.4MH—Ni电池的循环稳定性.6
2.3三种典型二次电池性能的比较6
第三章、目前存在的问题9
第四章、发展与展望10
参考文献11
致谢13
摘要
综述了MH—Ni电池的原理、性能等特征;且通过与Cd—Ni电池和锂离子电池性能相比,进一步阐述MH—Ni电池的特点和存在的问题,从而使得开发低Co或无Co贮氢合金成为必要。
并从MH-Ni电池原理、材料特性与电池性能的关系角度综述电极材料的研究进展”通过与Cd-Ni电池和锂离子电池比较,阐述MH-Ni电池特点和存在的问题,并展望MH-Ni电池的发展趋势”。
关键词金属材料MH-Ni电池综述贮氢合金Cd-Ni电池锂离子电池
前言
近年来,城市汽车大量增加,极大地改变了人们的生活,但人们在享受汽车文明的同时,也必须面对汽车带来的负面影响:
环境污染和过度使用能源.汽车尾气排放引起大气污染、酸雨、日照减少、农作物减产、天气变暖、温室效应等不良后果,而且可开采利用的石油资源愈来愈少”第三次中东战争(1967年6月-1970年8月)以后,石油输出国对西方国家实行石油禁运,迫使发达国家寻找新的能源,发展新的交通工具,从而带动了电动汽车及其电池的发展”特别是近十几年来,由于个人电脑、移动电话、电动工具等便携式电子产品的飞速发展,促使与之配套的小型二次电池向小型化、高容量、快充电方向快速发展”MH-Ni电池和锂离子电池的开发成功,给小型二次电池的发展注入了活力,使其呈现一派勃勃生机,其中MH-Ni电池的发展显得更为重要和具有现实应用性。
第一章MH—NI电池的发展
1.1MH—NI电池的性能及其优越性
MH-NI电池的性能主要取决于其负极材料贮氢合金的性能,故MH-Ni电池的发展主要就是贮氢合金的研制”贮氢合金是一种能在晶体的空隙中大量贮存氢原子的合金材料”这种合金具有可逆吸放氢的性质,可贮存相当于合金自身体积上千倍的氢气,吸氢密度超过液态氢和固态氢,既轻便又安全,显示出无比的优越性”当然,并不是所有的合金都能很好地贮存氢气,具有实用价值的贮氢合金必须具备一些基本性能,如贮氢量大、容易活化、离解压力适中、在室温下吸放氢反应速度快、成本低、寿命长”的电池材料。
1.2MH—NI电池的发展历史
第一个具有应用前景的贮氢合金LaNi5是荷兰菲利浦公司的Zijlstra等人在1969年发现的”随后,1974年美国人发表了TiFe合金贮氢的报告,从此贮氢合金的研究和利用得到了较大发展”上世纪70年代初,Justi和Ewe首次发现贮氢材料能够用电化学方法可逆地吸放氢,紧接着就开始了MH-Ni电池的研究”1984年,荷兰飞利浦公司研究解决了贮氢材料LaNi5在充放电过程中容量衰减的问题,使MH-Ni电池的研究进入实用化阶段[1,12-14]”截至目前,已经开发了稀土系、钛系、锆系、镁系等四大系列贮氢合金”其中尤以稀土系贮氢合金具有优异的特性,并且在其他各类合金中,也常常在不同程度上添加稀土元素以改善其贮氢性能”根据国内资源情况,我国也多集中于稀土系贮氢合金材料的研制上,并形成了一定的生产能力”稀土系AB5型贮氢电极合金以LaNi5、MmNi5、MLNi5等为代表的稀土系贮氢合金,最大贮氢密度(14%质量)并不高,但其表面的稀土氧化物和表面下层的氧化物/Ni界面即使在室温下也具有将氢分子离解的初期活化特性,故电化学循环寿命性能非常优越。
第二章MH—Ni电池特性
2.1MH—Ni电池的原理
MH-Ni电池具有与Cd-Ni电池同样的正极,负极为贮氢合金,正负极之间用隔膜隔开,而电解质溶液是由KOH和LiOH所组成,电池充放电时的反应为式
(1)~式(3)
正极Ni(OH)2+OH-=NiOOH+H2O+e
(1)
负极M+xH2O+e=MHx+xOH-
(2)
总反应xNi(OH)2+M=MHx+xNiOOH(3)
在上述电极反应中,充放电过程可看作只是氢原子从一个电极转移到另一电极的反复过程”充电时,氢化物电极作为阴极贮存水电解出氢”放电时,金属氢化物作为阳极放出氢并氧化成水”镍-氢化物(MH-Ni)电池采用负极容量过剩的配置方式,由于负极容量高于正极,在过充时,正极析出的氧在氢化物电极上被还原成水(消氧反应)”过放时,在正极上析出的氢被氢化物电极合金吸收(消氢反应)故MH-Ni电池具有良好的过充放电能力[2,7,17]
MH-Ni电池过放电时,正极上HO被还原产生H,H在负极复合,如式(4)~式(6)所示”
正极(NiOOH)2H2O+2e=H2+2OH-(4)
负极(MH)2M+H2=2MH(5)
总反应MH+OH-=M+H2O+e(6)
过充电时,电池正极上将产生氧气,且很容易地扩散到电池而被复合掉,如式(7)和式(8)所示”
正极(NiOOH)4OH-=2H2O+O2+4e(7)
负极(MH)2H2O+O2+4e=4OH-(8)
2.2MH—Ni电池的性能
MH-Ni电池是继Cd-Ni电池之后于上世纪80年代迅速发展起来的新一代高能蓄电池,与传统的Cd-Ni电池相比,具有较高的容量、无镉公害、无记忆效应、耐过充放电性能好等特点,是最有希望应用于电动汽车动力的绿色电池”电池性能在很大程度上决定于贮氢合金的性能,作为MH-Ni电池贮氢合金的性能指标主要包括吸放氢能力、电化学容量、自放电速率、循环稳定性等[4,6,20-21]”
2.2.1贮氢合金的吸放氢机理.
贮氢合金与氢气的反应是固-气反应,分子氢在合金表面首先解离成原子态氢,然后在向合金内扩散,生成固溶吸氢的A相及B相氢化物,在A相和B相之间存在一个A和B相共存的区间,即平台区”通常用氢压、组成和温度之间的关系描述合金的吸放氢性能[16,18,20]”
2.2.2MH—Ni电池的电化学容量.
电极的电化学容量等于参与电化学反应的氢量”对最大吸氢量为X的AB(n)型贮氢电极,理论容量由式(9)计算”
C=(X×F)/(3.6×Mabn)(9)
式中F为法拉第常数,M为贮氢合金的摩尔质量,X为每摩尔合金所吸收氢原子的最大值”给定温度!
放电电流及终止电位,通过放电时间,便可测得电极的放电容量”一般取5h,即0.2C的放电容量”但是在实际测定中,由于极化的影响,实际容量均低于理论容量”
2.2.3MH—Ni电池的自放电.
如果长时间放置电池,吸藏在电极中的氢会自然慢慢地被消耗掉,从而使电池(或电极)容量降低,这种现象称之为自放电”MH-Ni电池贮氢合金容量的损失来自两方面”一是可逆的自放电,可通过在贮氢合金电极表面涂一层半透膜,使其得到有效抑制”二是不可逆的自放电,可以通过改变合金内部结构和对合金进行表面改性来减轻电极的容量损失”
2.2.4MH—Ni电池的循环稳定性.
当电极反复进行电化学吸放氢时,电极的放电容量会随着循环次数的增加而降低”当电化学容量降到某一特定值时的循环次数,即为电极的循环寿命”对于5号密封电池,通常是以电池容量降低到起始容量60%的循环次数来表示(012C放电速率条件下)”电极的循环寿命与材料特征、充放电速率、放电深度及工作温度都有关系”而电极循环寿命降低主要是由于在反复充放电循环后,合金晶格膨胀,合金粉化加剧,造成合金循环寿命的本征退化和贮氢材料表面的氧化,尤其是合金粉化产生的新鲜表面不断氧化,导致循环寿命的损失[5,19,24-28]”
2.3三种典型二次电池性能的比较
在作为动力电池的小型二次电池中,目前已呈现Cd-Ni电池、MH-Ni电池、锂离子电池三分天下的局面”由表1可以看出,MH-Ni电池与Cd-Ni、锂离子两种电池相比:
比能量高,目前开发研制的动力电池质量比能量已近100W·h/kg,体积比能量已近300W·h/L,已与锂离子电池水平相当;比功率高现MH-Ni动力电池比功率已达100~200W·h/kg,最高已达到630W·h/kg,体积比能量可达200~300W·h/L,最高已达到1700W·h/L,性能已高于锂离子电池水平,在混合动力型电动车应用上体现出更加明显的优势;寿命长,目前MH-Ni动力电池的寿命一般可到300~600次,据报道目前最高寿命已可达1500次;安全性高、无镉污染,被誉为“绿色电源”。
而MH-Ni电池在市场竞争中面临着Cd-Ni电池和锂离子电池两面夹击”在价格方面Cd-Ni电池占据着优势,在比能量方面MH-Ni电池不敌锂离子电池”在与Cd-Ni电池竞争中,由于MH-Ni电池具有Cd-Ni电池所无法比拟的良好耐过充放电性能并且通过实现规模化生产,降低了成本,迅速取代了部分Cd-Ni电池市场,并在近年来发展迅猛,在移动通讯、便携式计算机领域站稳脚跟”在与锂离子电池电池竞争中,锂离子电池的优点是单位总量电池电容量比MH-Ni电池大,缺点是价格高,存在发火危险,所以MH-Ni电池正向高容量化发展,两者竞争最激烈的是便携式计算机应用市场。
表1小型二次电池的性能
Table1Propertiesofsmallsecondarybattery
项目
Cd-Ni电池
MH-Ni电池
锂离子电池
放电电压/V
1.2-1.0
1.2-1.0
3.7-3.0
比能量/(W·h·kg-1)
60-85
80-100
90-120
能量密度/(W·h·L-1)
140-180
240-300
300-380
价格/(美元·循环-1)
0.06
0.1
0.08
能量价格/(美元·W-1·h-1)
0.3
0.4
0.8
低温性能(-20℃,放电%)
50
50
40
自放电/(%·月-1)
15
20
12
快速充电/倍
4
3
2
功率密度/(W·L-1)
1000
800
500
工作温度范围/℃
-40-45
-40-45
-20-45
充电控制(电压极限)
1.4
1.4
4.2
放电控制电压/V
临界0.8
0.8
3.2
第三章目前存在的问题
从经济、性能及应用前景等综合考虑,MH-Ni电池作为动力电池与Cd-Ni电池、锂离子电池两种电池相比拥有比较明显的优势”但是同样也存在一定(如MH-Ni电池负极材料贮氢合金)的问题”经济上,以AB5型MH-Ni电池为例,目前典型的商品化合金成分是MlNi(3.55)Co(0.75)Mn0.4Al(0.3)和MmNi(3.55)Co(0.75)Mn(0.4)Al(0.3)(Ml,富镧混合稀土;Mm,富铈混合稀土),其中合金元素Co对稀土贮氢合金的电化学性能起着极其重要的作用,但Co元素价格昂贵,合金中Co的含量不到10%,其成本却占合金原材料成本的约50%”性能上。
我们需要解决的问题还有很多,如由于熔炼的技术、工艺及装备等问题而引起的合金组织成分均一性、含氧量、粉末粒度等问题,合金吸放氢过程的滞后问题,材料中的缺陷与贮氢性能的关系问题,高倍率及纳米材料的应用问题等。
第四章发展与展望
MH—Ni电池的性能主要取决于其负极材料贮氢合金的性能,故MH—Ni电池的发展主要就是贮氢合金的研制。
贮氢合金是一种能在晶体的空隙中大量贮存氢原子的合金材料。
这种合金具有可逆吸放氢的性质,可贮存相当于合金自身体积上千倍的氢气,吸氢密度超过液态氢和固态氢,既轻便又安全。
显示出无比的优越性。
因此,世界各工业强国投入大量的人力、物力研究
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 李万军 论文