切削力传感器Word格式文档下载.docx
- 文档编号:22348458
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:14
- 大小:324.31KB
切削力传感器Word格式文档下载.docx
《切削力传感器Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《切削力传感器Word格式文档下载.docx(14页珍藏版)》请在冰豆网上搜索。
一般的轮辐传感器主要用于单向重载荷的压力检测,为撼高其刚度多利用纯剪状态下轮辐截面应力分布规律,在与传感器轴线45”方向布片(图2a),即所谓的剪辐式荷重传感器川,这种形式传感器的特点是传感器的灵敏度只与筋板抗剪截面积吞X孔有关,因此可缩短轮辐体长度,进而减小传感器的体积,同时也大大提高了传感器的刚度。
显然,这种设计方案对单向的重载检测是适用的。
但切削力传感器的情况则复杂得多,由干切剥力的方向未知,通常要同时测出其在三个既定方向的切削分力Fx、Fz、FY。
而径向切削力FY一般小于500kgf,如仍采用上述剪辐式原理设计,势必使轮辐截而积过小,以至不能满足其它二向分力和贴片的要求。
因此采用图1(b)的布片形式,即用轮辐的拉压变形分别测定Fz、FY二向切削分力,FY采用辐板的端面布片,还过轮辐的弯曲变形来测定。
考虑到主切削分力Fz、FY,而通常弯曲形与相同结构的拉压形传感器比较,前者的灵敏度较高,所以采用图工(b)的设计方案可使传感器在Fz、FY分力作用下的输出差距缩小,便于二次仪表的选配。
同时,这种方案也使传感器具有较好的抗干扰载荷能力,可通过桥路自动补偿各向切削分力间的相互千扰及偏心载荷的影响。
用薄壁圆筒式切削力传感器测定
传感器中部为空心薄壁圆筒,外表面粘贴有两组电阻应变片。
传感器的两端有法兰盘,以此用螺钉联接安装在试材夹具与制材跑车搁凳之间。
电阻应变片R1和R2纵向粘贴在圆筒表面Z方向的位置上,相互错开180,接成半桥。
应变片R3、R4、R5、R6与轴线交叉倾斜45角,周向均匀分布,接成全桥。
锯切时,带锯条对木材切削力的切向分量Fx和法向分量Fy分别在薄壁圆筒上形成弯矩M和扭矩Mx。
测Fx的电桥输出反映弯矩M的大小,与Fx成正比。
测Fy的电桥输出反映扭矩Mk的值,与Fy成正比。
为便于数据处理,切削试验时,保持力臂a不变。
在锯切过程中,切削分力Fx和Fy的作用点是不断变化的,但弯矩M和扭矩Mk不受力点变化的影响,所以电桥的输出也不受力点变化的影响。
这是在木材切削力传感器的设计和安装中必须满足的一个条件。
与之相反,薄壁圆筒上Z向弯矩因受Fx作用位置前后变化的影响,所以不能用来测Fy力。
由于R3、R4、R5、R6贴片位置的对称性,切向分力Fx在测Fy的电桥中理论上无输出。
因为应变片R1和R2的中心位于通过圆筒中心线平行于z轴的平面内,所以Fy产生的z向弯矩在测Fx的电桥中理论上也无输出。
各电桥输出信号的单一性是多分量切削力传感器又一个必须满足的条件。
因为Z向力在两个测力电桥中都产生输出,所以锯切时不允许有Z向力存在。
一般地,薄壁圆筒式传感器测切削力两个正交分量时,第三方向的切削力分量必须为零,否则将干扰两向分力的测定结果。
电桥系统框图如图2a所示。
木材切削力的两个分量Fx二和Fy,通过薄壁圆筒切削力传感器变为两组电桥的输出,经动态电阻应变仪放大后,输人光线示波器,记录在示波纸上。
切削力分量的记录曲线如图2b所示。
根据记录曲线的相对高度hx和hy,算得切削力分量Fx和Fy的数值。
Design,developmentandtestingofafour-componentmillingdynamometerforthemeasurementofcuttingforceandtorque
参考文献:
MechanicalSystemsAndSignalProcessing
作者:
FrankUnsacar,HaciSaglam,HakanLsik
具有很高的线性度和较低的误差,它已制定和提供必要的数据采集系统由硬件和软件。
测功机可以衡量三个垂直切割力和扭矩期间同时铣削和模拟测量值可以存储在计算机数据采集系统。
这是旨在衡量高达5000的最大力量和灵敏度的系统±
5N。
Athree-forcecomponentanaloguedynamometercapableofmeasuringcuttingforcesduringmillingwasdesigned,developedandtested.Acomputerconnectionfordataacquisitionwasalsomadeandcalibrated.Theanaloguedatacanbeevaluatednumericallyonacomputerandwhenrequiredcanbeconvertedbacktoanalogue.Theschematicrepresentationofthecuttingforcemeasurementsystemiscapableofmeasuringfeedforce(Ff),thrustforce(Ft)andmaincuttingforce(Fc)whichoccursduringmillingoperationsasseeninFig.1.ThisdynamometerconsistsoffourelasticoctagonalringsonwhichstraingaugesweremountedandnecessaryconnectionsweremadetoformmeasuringtheWheatstonebridges
On-lineandreal-timeinformationofthecuttingforcedataareautomaticallyreadandstoredbyasystemduringmetalcutting.SincetheoutputfromWheatstonebridgecircuitsisverylowduetothehighstiffnessrequirementofthedynamometer,theanaloguesignalscomingfromdynamometeramplifiedbystraingaugeinputmodules(AdvantechADAM3016)arethenconvertedtodigitalsignalsandcapturedbyPCI-1712dataacquisitioncardinstalledinMS-Windows-basedPC.Thestoreddatacanberetrievedandusedforanalysiswhenrequired.Thedataacquisitionsoftwareiscapableofaveragingandgraphicalsimulationofforcesignalsinprocess.ThelistsoftheexperimentalequipmentsusedareshowninTable1
Table1.Experimentalequipmentsandtheirtechnicalproperties
Machinetool
Universalmilling:
Taksan,FU-315V/2×
1250
Dynamometer
Straingauge-basedfour-componentcuttingforcedynamometer
Straingauge
HBM:
LY41-10/350;
effectivegaugelength10mm;
Gaugefactor2.09±
1%;
gaugeresistance350±
0.3%Ω;
transversesensitivityof−0.3%
Strainring
Octagonalinshape;
madeofAISI4140steel;
b=30mm;
r=32mm;
t=8mm
Strainamplifier
Advantech:
ADAM3016
Dataacquisitioncard
A/Dconverter;
PCI1712,16singlechannels(8differential),1–10MHz
Datarecordingsoftware
WritteninC;
capableofrecording,simulatinganddataprocessing.
Vibrationanalyserpackage
CommtestInstrumentvb3000:
range1–20.000Hz,ISO2372andISO10816standard.Accelerometer:
frequencyrange0.5–15kHz,dynamicrange±
50g
Coupler/powersupply
Kistler:
5118B2;
bandwidth0.03,0.006Hz;
gain1×
10×
100×
;
outputvoltage±
10V;
operatedbyinternalbattery(4×
1.5V)orexternalvoltage6–28VDC
Universaltestingmachine
LLOYDinstrumentT50K
Thethicknesst,radiusr,andwidthofthecircularstrainringbarethethreebasiccontrollableparametersthataffecttherigidityandsensitivity.Sincethereisnoeffectofringwidthbandmodulusofelasticity(E)onthestrainperunitdeflection,bmincanbetakenas30mmtosetuptheringssecurely[6].
ThedeformationofcircularringundertheeffectofthrustforceFtandmaincuttingforceFcseparatelyisshowninFig.2(b)and(c),respectively.AslongasstrainonAandBwherethestraingaugesaregoingtobefixed(Fig.2(a))arewithintheelasticlimitsoftheringmaterial,thestrainanddeflectionduetothemaincuttingforceshouldbeconsideredforthepurposeoftheringdesignformaximisationofsensitivity(εc/Fc)andstiffness(Fc/δc).
Thestraingaugesshouldbeplacedwherethestressconcentrationhasmaximumvalue.Theexperimentshaveshownthatgoodresultsareobtainedforoctagonalringswhentheinclinedgaugesareatpoints45°
fromtheverticalinsteadof39.6°
requiredbythecircularringtheory.Thestrainperunitdeflectioncanbeexpressedas[6]
(1)
whereδtisthedeflectioninaradialdirectionandεtisthestrainduetothrustforceFt.Itisclearthatformaximumsensitivityandrigidityεt/δtshouldbeaslargeaspossible.Thisrequiresthatrshouldbeassmallaspossibleandtaslargeaspossible.Butsmallrbringssomedifficultiesinmountingtheinternalstraingaugesaccurately.Therefore,foragivensizeofrandb,tshouldbelargeenoughtobeconsistentwiththedesiredsensitivity.Itoetal.[7]performedafiniteelementanalysisfortheelasticbehaviourofoctagonalrings.Theyexpressedthattheoctagonalringissubstantiallystifferthanthecircularringwhent/rlessthenorequalsto0.05,thedifferenceindisplacementofcircularringandoctagonalringis<
10%ift/rgreaterthenorequals0.25.Inordertobeconsistentwiththisexpression,theringthicknessandringradiusweretakenas8and32mm,respectively.Thus,therateoft/r(8/32=0.25)providescorrespondingsensitivitytostiffnessratioε/(δ/r)fortheoctagonalring.
Thecross-sensitivitycanbeexpressedasstrainmeasuredonaxesthatisnormaltothemainaxes.Itisdesiredthatdynamometersmustnotbecompletelyinsensitivetothecross-strain.Itispossibletomeasurethecuttingforcesindependentlyandaccuratelyaslongasthecross-sensitivityissmall.Thestrainerrorswillbelessifthiseffectiswithinanacceptablerange.Theseerrorscanarisebecausethestraingaugesarenotfittedsymmetricallytotheringaxesandifthestrainringsarenotmountedinthedirectionofmeasuredforceaxes.Theaverageerrorsforcross-sensitivityinthreeaxeswerecalculatedinrangeof0.6–1.7%asshowninTable2(b).
Table2.Theresultsoftestsperformedonthedynamometer
(a)Theresultsoflinearitytest
Axes
Load(N)
Output-ε(mV)
Calibrationvalue-ε(mV)
Error(%)
Ff
2400
128.3
130.0
1.3
Fc
126.8
125.0
1.4
Ft
5000
134.2
135.8
1.2
(b)Theresultsofcrosssensitivitytest
Outputε(mV/μm)
Averageerror(%)
X
Y
Z
−0.8
−0.6
1
−1.2
−2.2
−1
−1.7
1.6
0.9
(c)Theresultsofeccentricitytest
e=0mm(mV)
e=50mm(mV)
(%)Outputerror
1000
54.6
54.7
0.18
53.8
53.9
25.86
25.53
0.13
(d)Theresultsofperformancetest
ε(mV)
F(N)
%Outputerror
14.45
255
Accuracy=1000/1014.9=0.985
13.50
250
1014.9N
Error=14.9/1000=0.015
32.87
950
Error=0.15%
Inthisstudy,straingauge-baseddynamometerhasbeendesignedanddeveloped.Ithasbeendevisedandconnectedwithnecessarydataacquisitionsystemconsistingofhardwareandsoftware.Dynamometercanmeasurethreeperpendicularcuttingforcecomponentsandtorquesimultaneouslyduringmillingandthemeasurednumericalvaluescanbestoredincomputerbydataacquisitionsystem.Thisdynamometerwasdesignedtomeasureupto5000Nmaximumforceandthesensitivityofsystemis±
5N.
Theorientationofoctagonalringsandstraingaugelocationsweredeterminedtoobtainmaximumoutputofringminimumcross-sensitivityunderdeformation.Tomeasurethedynamiccuttingforce,anaccelerometerwasattachedtothedynamometerinmeasurementdirectionandthedynamiccuttingforcecalculationwasalsogiven.FordatatransferbetweenthedynamometerandPC,aproperexperimentalset-upwasperformedandsuitablesoftwarewaswritten.Inordertodetermineaccuracy,thedynamometerwascalibratedstaticallyanddynamicallyandsubjectedtothelinearitytest,cross-sensitivitytest,eccentricitytestandperformancetest.
ThestaticcalibrationcurvesforFf,FcandFtforceshaveshownthatithasveryhighlinearity(inerrors1.3%,1.4%and1.2%)andlowcross-sensitivityerr
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 切削力 传感器