9第三章第四节固定床吸附过程的计算文档格式.docx
- 文档编号:22325496
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:18
- 大小:257.26KB
9第三章第四节固定床吸附过程的计算文档格式.docx
《9第三章第四节固定床吸附过程的计算文档格式.docx》由会员分享,可在线阅读,更多相关《9第三章第四节固定床吸附过程的计算文档格式.docx(18页珍藏版)》请在冰豆网上搜索。
时间τ为横坐标,则随时间的推移可画出一条τ-y曲线。
如图3-14所示,开始时流出物中吸附质浓度为yB,它是与吸附剂中的xB浓度相平衡的(xB为破点时床层出口端的吸附负荷)。
流出物中吸附质浓度开始上升,到τE时升到yE,即接近床层进口浓度,这时床层已完全没有吸附能力,吸附波的末端也离开床层了。
于是在τ-y图上,从τB到τE呈现一个S型曲线,这条曲线称“透过曲线”。
它的形状与吸附负荷曲线是完全相似的,只是方向相反。
由于它与吸附负荷曲线成镜面对称相似,所以也称吸附负荷曲线为“吸附波”或“传质前沿”。
由于透过曲线易于测定和标绘出来,因此也用它来反映床层内吸附负荷曲线的形状,而且也能准确地求出破点。
如果透过曲线比较陡,说明吸附过程比较快,反之则速度较慢。
如果透过曲线是一条竖直的直线,则说明吸附过程是飞快的,是理想的吸附波。
(二)保护作用时间
保护作用时间是固定床吸附器的有效工作时间。
它定义为从吸附操作开始到床层被穿透所经历的时间称为保护作用时间,如图3-14所示的由τ0到τB所经历的时间,到达τB时,床层内吸附剂还没有完全饱和。
图中的yB>
0,是根据排放标准规定出的一个值。
图3-14还出现一个点,即τE,时间到达τE时,吸附波整个移出床层,说明床层内的吸附剂已完全饱和,完全失去了吸附能力,这一点称为耗竭点或称干点,到达干点时,床层内流出的气体中,吸附质浓度基本回复到进口浓度。
在实际操作中,一旦达到了破点,就应停止操作,切换到另一吸附床,穿透了的吸附床转入脱附再生。
(三)传质区高度
把一个吸附波所占据的床层高度称为传质区高度,用Za表示。
从理论上讲,传质区高度应是流出气体中溶质浓度从0变到y0这个区间内吸附波在Z轴上占据的长度,但实际上再生后的吸附剂中还残留一定量的吸附质(一般为初始浓度y0的5%~10%),而吸附剂完全达到饱和的时间又太长,所以一般把由破点时间τB对应的气体浓度yB到干点时间τE对应的气体浓度yE这段时间内吸附波在Z轴上所占据的长度称为传质区高度。
为了使吸附操作比较可靠,就必须使床层有足够的长度,起码要包含一个稳定的传质区。
而形成一个稳定的传质区需要一定时间。
如果吸附器床层长度比传质区长度还短,那就不能出现一个稳定的传质区,操作不稳定,出现破点的时间会比计算的来得快,为避免此点,吸附器床层长度一定要比传质区长度长。
例如实验室内所用吸附柱高度就规定应至少是传质区长度的两倍,而吸附柱直径最少应是最大吸附剂颗粒直径的10倍。
(四)传质区吸附饱和率(度)和剩余饱和能力分率
这两个概念可用下式表示:
这也是量度固定吸附床操作性能的两个指标,吸附饱和率越大,剩余饱和吸附能力分率越小,说明吸附床的操作性能越好。
二、希洛夫近似计算法
(一)希洛夫公式
在理想状态下,在理想保护作用时间τˊB内通过吸附床的吸附质将全部被吸附,即通过床层的吸附质的量一定等于床层内所吸附的量,即:
(3-19)
式中
GS——气体通过床层的速率,kg/(m2·
s);
A——吸附床层截面积,m2;
xT——吸附剂的静活性(平衡吸附量),kg/kg;
τˊB——理想保护作用时间,min;
c0——气体中污染物初始浓度,kg/m3;
ρB——吸附剂堆积密度,kg/m3;
Z——床层长度,m。
由上式可得:
(3-20)
对于一定的吸附系统和操作条件,ρB、xT、Gs、co均已确定,因此可令
(3-21)
则(3-21)式可变成:
τ
ˊB=KZ
(3-22)
但对一个实际的操作过程,由于床层存在阻力,因此实际上的保护作用时间τB要比理想保护作用时间τˊB短,我们把被缩短的这段时间称为保护作用时间损失,用τo来表示。
阻力越大,τo越大。
三个时间的关系可表示如下:
τB=τˊB—τo
(3-23)
将(3-22)式代入上式,即得:
(3-24)
(3-24)式即为具有实用价值的希洛夫公式,Zo可以称为床层长度损失。
τo和Zo均可由实验求得。
(二)利用希洛夫公式的简化计算
在吸附净化的设计中,常利用希洛夫公式进行简化计算。
简化计算还是以实验作基础,利用希洛夫公式求出K与τo,再根据生产要求的操作周期求出吸附床层长度,并根据气速,求出所需床层半径或截面积。
具体步骤简述如下:
1.选择吸附剂,确定操作条件,包括温度、压力和流速。
固定吸附床的气体流速一般掌握在0.2~0.6m/s之间;
2.规定出合适的破点浓度;
3.在一定气速u下,测不同床层长度Z的保护作用时间τB,作出τB-Z直线,求出K和τ0;
4.定出操作周期τB,化为min;
5.将K、τ0、τB代入希洛夫公式,求出Z,若Z过长可以分层。
6.用下式计算床层直径:
(3-25)
7、求吸附剂用量W:
(3-26)
ρB——吸附剂堆积密度,kg/m3。
为避免装填损失,可多取10%装填量。
[例3-1]
用活性炭固定床吸附器吸附净化废气。
常温常压下废气流量为1000m3/h,废气中四氯化碳初始浓度为2000mg/m3,选定空床气速为20m/min。
活性炭平均粒径为3mm,堆积密度为450kg/m3,操作周期为40小时。
在上述条件下,进行动态吸附实验取得如下数据:
床层高度Z/m
0.1
0.15
0.2
0.25
0.3
0.35
透过时间τB/min
109
231
310
462
550
650
请计算固定床吸附器的直径、高度和吸附剂用量。
解:
以Z为横坐标,τB为纵坐标将上述实验数据描绘在坐标图上得一直线(例3-1附图)。
依据图,求出直线的斜率即为K,截距即为-τ0,得
K=2143(min/m)τ0=95(min)
将K、τ0、τB代入希洛夫公式得:
取Z=1.20m。
采用立式园柱床进行吸附,计算出吸附床直径:
可取D=1m。
所需吸附剂量
考虑装填损失,所需吸附剂量W为:
423.9×
1.1=466kg
三、透过曲线计算法
透过曲线计算方法与希洛夫近似计算法相比要复杂一些,但还是要假定吸附体系是一个很简单的恒温体系,混合气体中只有一种可被吸附的吸附质,该体系得到的仅有一个吸附波或传质区。
此时固定床吸附器计算的主要内容为传质区高度Za,保护作用时间τB和全床饱和度S。
(一)传质区高度的确定
图3-15为一理想透过曲线。
气体的初始浓度为y0(kg溶质/kg无溶质气体),气体流过床层的质量流速为Gs(kg/m2·
h),经过一段时间后流出物总量为W(kg无溶质气体/m3)。
透过曲线是比较陡的,流出物中溶质的浓度从基本上为零迅速上升到进口浓度。
以yB作为破点的浓度,并认为流出物浓度升到接近y0某一浓度值yE时,吸附剂基本上已耗竭。
在破点处流出物量为WB,而到吸附剂耗竭时,流出物的量为WE。
这样,在透过曲线出现期间所积累的流出物量Wa=WE-WB。
把浓度由yB变化剂yE这部分的床层高度称为一个吸附区或称传质区高度。
当吸附波形成后,随着混合气体的不断通入,传质区沿床层不断移动,令τa为吸附波移动一个传质区高度所需的时间,则:
(3-27)
又令τE为由通气开始至床层耗竭所需要的时间,即传质区形成和移出床层所需的时间之和,则:
(3-28)
设传质区形的时间为τF,则τE-τF应是自吸附波形成开始到移出床层的时间。
在稳定操作时,当吸附波形成后,其前进的距离和所需要的时间之比(即吸附波前进的速度)应是一个常数。
设吸附床高度为Z,传质区高度为Za,则:
得出传质区高度为:
(3-29)
设气体在传质区中,从破点到床层完全耗竭所吸附的吸附质的量为U(kg/m2床层截面积),即为图3-15中阴影的面积
(3-30)
若传质区中所有的吸附剂均为吸附质所饱和,则其吸附容量应为yoWakg/m2。
但实际情况是,当达到破点时,传质区内仍旧具有一部分吸附容量,其值为U,式(3-30)所示。
若以E代表到达破点时传质区内仍具有的吸附能力与该区内吸附剂总的吸附能力之比,即前述剩余吸附能力分率,则
(3-31)
很显然,(1-E)即代表了吸附区的饱和程度,E愈大,说明吸附区的饱和程度愈低,形成传质区所需的时间愈短。
当E=0时,说明吸附波形成后,吸附区内的吸附剂已全部达到饱和,此情况下,吸附形成的时间应与移动一个吸附波长度的距离所需时间相等:
τF=τa
若E=1,即传质区内吸附剂基本上不含吸附质,则传质区形成的时间基本上等于零。
据此两种极端情况,应有:
(3-32)
将式(3-32)代入式(3-29)得:
(3-33)
因为τa=Wa/GS,τE=WE/GS,代入上式即得:
(3-34)
由式(3-34)可知,要确定传质区的高度Za,必须通过实验得出透过曲线的形状,从而确定Wa、WE和E的值。
在实际吸附计算中,E一般取0.4~0.6。
(二)吸附床饱和度
设吸附床横截面积为A,吸附床高度为Z,其中吸附剂的堆积密度为ρB,则吸附剂的总量应为ZAρB。
若床层全部被饱和,吸附剂与污染物进口浓度y0成平衡的静活性为xT,则此时吸附剂
所吸附的污染物的量为:
(3-35)
实际操作中,达到破点时,总会有一部分吸附剂未达饱和,此时吸附床中实际吸附量应为饱和区的吸附量与传质区的吸附量之和。
其中:
饱和区吸附污染物的量=(Z-Za)AρBxT
传质区吸附污染物的量=Za(1-E)AρBxT
于是整个吸附床的饱和度S为:
(3-36)
(三)传质区中传质单元数和传质单元高度的计算
吸附操作过程中,随着吸附的进行,床层内的传质区沿气流方向移动,移动的速度会远比气流通过的速度慢。
为了分析问题的方便,假定传质区移动方向与气流方向相反,则可把传质区认为是固定在某一高度,如图3-16所示。
假设床层高度Z→∞,则在床层顶面气固相达到平衡状态。
可对整个床层作物料衡算:
(3-37)
S——假想的吸附剂流量。
即:
(3-38)
上式可以看作是操作线方程,
为操作线斜率(图3-16)。
对于床层任一截面,则可有如下关系:
(3-39)
设床层截面积为1,则对床层中微元高度dz作物料衡算,得:
(3-40)
此物料衡算式表示的是单位时间单位面积的dz高度内,气体中溶质的减少量等于吸附剂固体中吸附的吸附质的量。
GS——气体流量,kg无溶质气体/m2·
h;
Kyap——气相体积传质总系数,kg吸附质/m3·
y*————与x成平衡的气相浓度,kg吸附质/kg无溶质气体。
将(3-40)式整理并在传质区内积分,即得传质区高度:
(3-41)
上式中HOG、NOG可以称为传质区内的传质单元高度和传质单元数。
与处理吸收计算相类似,传质单元数可用图解积分法求取。
当平衡线接近直线时,也可用下式近似计算:
(3-42)
△ym——对数平均推动力
(3-43)
对于低浓度气体,有时也可以用算术平均推动力。
下面通过例题讲解有关计算。
[例3-2]
用硅胶固定吸附床净化含苯废气。
废气初始浓度为y0=0.025kg苯/kg空气,操作温度为T=298K,p=202.7kPa,混合气体密度ρv=2.38kg/m3,动力粘度μV=1.8×
10-5kg/(m.s)。
气流速度为1m/s,吸附周期为90min,破点浓度yB=0.0025kg苯/kg空气,排放浓度yE=0.020kg苯/kg空气。
硅胶堆积密度ρB=650kg/m3,平均粒径dp=6mm。
比表面积ap=600m2/m3。
给定条件下的平衡关系为y*=0.167x1..5,传质单元高度
。
试计算床层高度。
设床层截面积为1m2,以简化计算。
废气流量
;
传质单元高度
根据平衡关系式y*=0.671x1.5绘出吸附等温线(如附图a)。
由平衡关系可知,当y0=0.025时,xT=0.282,过平衡线上该点B作操作线,并按附表所列逐项计算列出。
表中第1栏为yB和yE之间选取的y值;
第2栏是自操作线上各点的y所对应的平衡线上y*的值。
依次计算出之后,用y值作横座标,以1/(y-y*)作纵座标,绘出曲线,并在yB与yE之间进行图解积分,即可得到第5栏的值,即NOG的值。
据此可得到对应于yE的NOG=5.925。
于是得到传质区高度Za:
Za=HOG·
NOG=0.071×
5.925=0.42(m)
例3-2
附表
y
y*
y-y*
1
2
3
4
5
6
7
yB=0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
yE=0.0200
0.0009
0.0022
0.0042
0.0063
0.0089
0.0116
0.0148
0.0180
0.0016
0.0028
0.0033
0.0037
0.0036
0.0034
0.0027
0.0020
625
358
304
270
278
294
370
500
1.1375
1.9000
2.6125
3.3000
4.0125
4.8375
5.9250
0.192
0.321
0.441
0.556
0.676
0.815
1.000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
下面根据剩余吸附能力分率E的概念,计算吸附床层高度Z。
将式(3-31)变换:
按照上式,若以y/y0为纵座标,以
为横座标,绘出曲线,曲线与y/y0=1水平线、(W-WB)/Wa=1的垂线之间的面积(见附图b),即为E。
图解积分可得:
E=0.55。
根据物料衡算关系式:
1×
ZρBSxT=GSτBy0
(3-44)
将(3-36)式代入上式,得:
(3-45)
将已知数代入上式,得:
解出Z:
Z=2.0(m)
有了床层高度Z,计算一下全床饱和度S:
可见,全床饱和度接近90%,说明设计基本合理。
四、经验估算法
用吸附法净化气态污染物时会碰到多种情况,有时会缺乏前述理论计算时所需要的数据,此时可由生产中或实验测得吸附剂的吸附容量值,用来估算吸附剂的用量,然后根据操作周期和经验气体流速(一般0.2~0.6m/s),即可计算出吸附床高度。
[例3-3]
拟用活性炭吸附器回收废气中所含的三氯乙烯。
已知废气排放条件为294K,1.38×
105Pa,废气中含三氯乙烯的体积分数为2.0×
10-3,流量为12700m3/h,要求三氯乙烯的回收率为99.5%。
测得所要采用的活性炭对三氯乙烯的吸附容量为0.28kg三氯乙烯蒸气/kg活性炭,活性炭的堆积密度为576.7kg/m3,其吸附周期为4小时。
操作气速根据经验,取0.5m/s,求固定吸附床高度。
三氯乙烯体积流量为:
12700×
2.0×
10-3=25.4m3/h。
将此换算成标准状况下的体积:
计算得三氯乙烯摩尔质量为131.5,则得三氯乙烯质量流量为:
在四小时内所要吸附的三氯乙烯的量为:
189.18×
4×
0.995=752.94kg
则所需活性炭体积为:
按操作气速0.5m/s计,所需吸附床直径为:
得床层截面积:
于是得床层高度为:
Z=m/A=4.66/7.065=0.66(m)
五、固定床吸附器床层压降估算
流体在固定床中的流动情况较之在空管中的流动要复杂得多,固定床中流体是在颗粒间的空隙中流动的,颗粒间空隙形成的孔道是弯曲且相互交错的,孔道数和孔道截面积沿流向也在不断改变。
所以流体流过床层的压力降,主要是由于流体与颗粒表面间的摩擦阻力和流体在孔道中的收缩、扩大和再分布等局部阻力引起,当流动状态为层流时,以摩擦阻力为主,当流动状态为湍流时,以局部阻力为主;
由于影响压力降的因素很多,目前尚无一个较完善的通用计算公式。
在设计固定床吸附器时,多根据实际情况,结合相关条件采用经验公式进行计算,或采用实测数据,实测数据可从同类型的工业装置中获得,也可由一定规模的实验装置中获得。
下面介绍几种可用于估算固定床吸附器的压力降的经验公式。
(一)气体通过静止吸附剂颗粒层的压力降
当气体通过静止的吸附剂颗粒层时,由于床层内堆积的是大量的粒径和形状不同的颗粒,颗粒之间的空隙结构毫无规则可言,因而造成气体流动的通道曲折复杂,难以进行理论计算,因此,对于这类固定床层可利用下面的经验公式计算床层的压力降:
(3-46)
△P——压力降,Pa;
Z——吸附剂层厚度,m;
λ——外摩擦系数;
dp——颗粒当量直径,m;
uh——气体在吸附剂颗粒空隙间的真实流速,m/s;
wv——气体重度,kg/m3;
g——重力加速度,9.81m/s2。
式中的当量直径dp可用下式计算:
(3-47)
ε——床层空隙率,m3/m3;
δ——单位体积床层中吸附剂颗粒的总表面积,m2/m3。
空隙率ε与颗粒的放置状况有关,对于均匀一致的球形颗粒,ε可取0.259~0.426,对于颗粒形状及大小不一的乱堆吸附剂层,其ε的值可按0.4计算。
(3-46)中的真实气速uh由于气流在床层中所走的通道是弯曲的,所以其真实气速uh会比空塔气速u高,uh可用下式近似计算:
(3-48)
外摩擦系数λ是雷诺准数的函数,即
(3-49)
μv——气体的动力粘度,kg/ms。
λ也可由实验得到。
由实验得知:
Re<
20时,
20<
7000时,
Re>
7000时,
λ=0.4
当吸附剂颗粒当量直径与吸附床直径D之比大于1/50时,λ需乘以由实验测得的较正系数。
(二)欧根(Ergun)公式法计算床层压降
欧根从大量实验中导出了单一流体通过固定床压力降的估算式为:
(3-50)
dp——吸附剂颗粒直径,m;
ε——床层空隙率,%;
ρv——气体密度,kg/m3;
μv——气体粘度,(Pa·
Z——床层高度,m;
GS——单位截面气体流速,kg/m2·
s。
(三)使用分子筛的固定吸附床压力损失
对于使用一般吸附剂(包括分子筛)可应用前述公式估算压力降。
但由于分子筛的形状和结构特点,可以采用更简单的计算方法。
美国联合碳化物公司在计算分子筛床层的压力降时,就使用了经过修正后的简化的欧根经验式:
(3-51)
Z——床层厚度,m;
λ——摩擦系数;
Ce——压力降系数,m·
s2/m2;
(实验测定)
GS——气体的质量流速,kg/m2·
s;
dp——颗粒直径,m;
ρv——气体密度,kg/m3。
若分子筛颗粒为柱状时,则当量直径dp为:
(3-52)
do——柱状分子筛颗粒的直径,m;
Lc——柱状分子筛颗粒的长度,m。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 第四 固定床 吸附 过程 计算