三角形总复习含答案Word格式文档下载.docx
- 文档编号:22293385
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:14
- 大小:79.47KB
三角形总复习含答案Word格式文档下载.docx
《三角形总复习含答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《三角形总复习含答案Word格式文档下载.docx(14页珍藏版)》请在冰豆网上搜索。
即ZBEDZC
180°
间接
说明:
在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于
求得。
2.三角形三边关系的应用
例2.已知:
如图2,在ABC中,ABAC,AM是BC边的中线。
AM1ABAC
2
延长AM到D,使MD=AM,连接BD
在CMA和BMD中,AMDM,/AMCZDMB,CMBM
CMABMD
BDAC
在ABD中,ABBDAD,而AD2AM
ABAC2AM
1
AM-ABAC
在分析此问题时,首先将求证式变形,得2AMABAC,然后通过倍长中
线的方法,相当于将AMC绕点旋转180°
构成旋转型的全等三角形,把AC、AB、2AM
转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。
很自然有
11
ABACAMABAC。
请同学们自己试着证明。
22
3.角平分线定理的应用
例3.如图3,ZB=ZC=90°
,M是BC的中点,DM平分ZADC。
AM平分DAB。
过M作MG丄AD于G,tDM平分/ADC,MC丄DC,MG丄AD
•••MC=MG(在角的平分线上的点到角的两边距离相等)
•/MC=MB,•MG=MB
而MG丄AD,MB丄AB
•M在/ADC的平分线上(到一个角的两边距离相等的点,在这个角的平分线上)
•DM平分/ADC
本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG=
MB。
同时要注意不必证明三角形全等,否则就是重复判定定理的证明过程。
4.全等三角形的应用
(1)构造全等三角形解决问题
例4.已知如图4,AABC是边长为1的等边三角形,△BDC是顶角(/BDC)为
120°
的等腰三角形,以D为顶点作一个60°
的角,它的两边分别交AB于M,交AC于N,连结MN。
AMN的周长等于2。
分析:
欲证AMN的周长等于2,需证明它等于等边ABC的两边的长,只需证
MNBMCN。
采用旋转构造全等的方法来解决。
以点D为旋转中心,将DBM顺时针旋转120°
,点B落在点C的位置,点M
落在M'
点的位置。
得:
/MBD=ZNCD=90°
RtMBDRtM'
CD
ZDCM'
ZDBM90
•ZNCD与ZDCM'
构成平角,
且BM=CM'
DM=DM'
ZNDM'
=ZNDC+ZCDM'
=ZNDC+ZBDM=120°
-60°
=
=60°
在MDN
和M'
DN中,
DMDM'
ZMDNZM'
DN
60,
MDN
M'
DN(SAS)
MN
N
CCNBM
CN
BMCN
AMN
的周长AMAN
AM
AN
BM
CNABAC2
通过旋转,使已知图形中的角、线段充分得到利用,促进了问题的解决。
(2)“全等三角形”在综合题中的应用
的长。
出AE、CE的长,使问题得以解决。
解:
•/AC平分ZFAE,CF丄AF,CE丄AE
•••CF=CE
CFCE
/F/CEA90
ACAC
ACFACE(HL)
AFAE
CDBC
/F/CEB90
CDFCBE(HL)
•••BE=DF
设BEDFx,则AEABBE21x,AFADDF9x
AEAF,21xx9,x6
在RtBCE中,CE、BC2BE2.102628
在RtACE中,ACAE2CE2.21628217
答:
AC的长为17。
5、中考点拨
例1.
如图,在ABC中,已知/B和/C的平分线相交于点F,过点F作DE//BC,交AB
于点D,交AC于点E,若BD+CE=9,则线段DE的长为()
A.9B.8C.7D.6
/\
/\
f1
D——F——E
fI
/7
BC
初看此题,看到DE=DF+FE后,就想把DF和FE的长逐个求出后再相加得
DE,但由于DF与FE的长都无法求出,于是就不知怎么办了?
其实,若能注意到已知条件
中的“BD+CE=9”,就应想一想,DF+FE是否与BD+CE相关?
是否可以整体求出?
若能想到这一点,就不难整体求出DF+FE也就是DE的长了。
•/BF是/B的平分线
•••/DBF=ZCBF
又DE//BC
•••/DFB=ZCBF
•••/BDF=ZDFB
•DF=BD
同理,FE=CE
•DF+FE=BD+CE=9
即DE=9
故选A
6、题型展示
例1.已知:
如图6,ABC中,AB=AC,/ACB=90°
D是AC上一点,AE垂直
BD的延长线于E,AEBD。
BD平分/ABC
E
D
-\
in
FCB
图6
要证/ABD=ZCBD,可通过三角形全等来证明,但图中不存在可证全等的三角形,需设法进行构造。
注意到已知条件的特点,采用补形构造全等的方法来解决。
简证:
延长AE交BC的延长线于F
易证ACFBCD(ASA或AAS)
AFBD
AEBD
AE-AFEF
于是又不难证得BAEBFE(SAS)
ZABDZCBD
•••BD平分ZBAC
通过补形构造全等,沟通了已知和未知,打开了解决问题的通道。
例2.某小区结合实际情况建了一个平面图形为正三角形的花坛。
如图7,在正三角形ABC
花坛外有满足条件PB=AB的一棵树P,现要在花坛内装一喷水管D,点D的位置必须满足条件AD=BD,ZDBP=DBC,才能使花坛内全部位置及树P均能得到水管D的喷水,
问ZBPD为多少度时,才能达到上述要求?
此题是一个实际问题,应先将实际问题转化成数学问题,转化后的数学问题是:
如图7D为正ABC内一点,P为正ABC外一点,PB=AB,AD=BD,ZDBP=ZDBC,求ZBPD=?
在解此数学问题时,要用到全等三角形的知识。
连CD
BPABBC
ZDBPZDBC
BDBD
PBDCBD(SAS)
ZBPDZBCD
ACBC
又ADBD
CDCD
ACDBCD(SSS
ZACDZBCD30
ZBPD30,即ZBPD30时,才能达到要求。
【实战模拟】
1.填空:
等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm,则这个等腰
三角形底边的长为。
2.在锐角ABC中,高AD和BE交于H点,且BH=AC,则/ABC=
BA的延长线的交点。
试比较/BAC
3•如图所示,D是ABC的/ACB的外角平分线与
与/B的大小关系。
4•如图所示,AB=AC,/BAC=90°
M是AC中点,AE丄BM。
/AMB=ZCMD
某个三角形三边的长。
【试题答案】
1.5cm
2.45
3.分析:
如图所示,/BAC是ACD的外角,所以BAC1因为/1=Z2,所以/BAC>
/2
又因为/2是BCD的外角,所以/2>
ZB,问题得证。
/BAC>
/B
•••/CD平分/ACE,•••/1=72
•••/BAC>
71,.・.7BAC>
72
•••/2>
7B,「.7BAC>
7B
4.证明一:
过点C作CF丄AC交AD的延长线于F
4—C
717BAE727BAE90
7172
又7BAC=7ACF=90°
AC=AB
ABMCAF
AMCF,7F7AMB
又AM=MC,•MC=CF
又73=74=45°
CD=CD
CDMCDF
7F7CMD
7AMB7CMD
证明二:
过点A作AN平分7BAC交BM于N
12M
N
、C
DC
ZBAE90
/2/BAE/3
/2/3
又AN平分/BAC
Z1ZC45
又AB=AC
ABNCAD
ANCD
又ZNAMZC45
AM=CM
NAMDCM
ZAMBZCMD
若图中所证的两个角或两条线段没有在全等三角形中,可以把求证的角或线段用
和它相等的量代换。
若没有相等的量代换,可设法作辅助线构造全等三角形。
证明:
由已知得:
4a
b4c
422
2ab
2222
2bc2ca
2a4
2b42c4
即a4
b4
42
c2a
22222
b2bc2ca
4
.4
^22
22~224
“2
.2小
a
b
2ca2bcc
4a
b0
.22
小22
■24,2.2
2ca
bc4ab
a2b2c22ab20
a2b2c22aba2b2c22ab0
abcabc0
abcabcabcabc0
abc0
abcabcabc0
abcbcacab0
a、b、c是某一三角形三边的长。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 复习 答案