数据结构课后答案Word格式文档下载.docx
- 文档编号:22249588
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:51
- 大小:549.45KB
数据结构课后答案Word格式文档下载.docx
《数据结构课后答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《数据结构课后答案Word格式文档下载.docx(51页珍藏版)》请在冰豆网上搜索。
学生记录之间的这种关系就确定了学生表的逻辑结构,即线性结构。
这些学生记录在计算机中的存储表示就是存储结构。
如果用连续的存储单元(如用数组表示)来存放这些记录,则称为顺序存储结构;
如果存储单元不连续,而是随机存放各个记录,然后用指针进行链接,则称为链式存储结构。
即相同的逻辑结构,可以对应不同的存储结构。
3.简述逻辑结构的四种基本关系并画出它们的关系图。
(1)集合结构
数据元素之间除了“属于同一集合”的关系外,别无其他关系。
例如,确定一名学生是否为班级成员,只需将班级看做一个集合结构。
(2)线性结构
数据元素之间存在一对一的关系。
例如,将学生信息数据按照其入学报到的时间先后顺序进行排列,将组成一个线性结构。
(3)树结构
数据元素之间存在一对多的关系。
例如,在班级的管理体系中,班长管理多个组长,每位组长管理多名组员,从而构成树形结构。
(4)图结构或网状结构
数据元素之间存在多对多的关系。
例如,多位同学之间的朋友关系,任何两位同学都可以是朋友,从而构成图形结构或网状结构。
其中树结构和图结构都属于非线性结构。
四类基本逻辑结构关系图
4.存储结构由哪两种基本的存储方法实现?
(1)顺序存储结构
顺序存储结构是借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,通常借助程序设计语言的数组类型来描述。
(2)链式存储结构
顺序存储结构要求所有的元素依次存放在一片连续的存储空间中,而链式存储结构,无需占用一整块存储空间。
但为了表示结点之间的关系,需要给每个结点附加指针字段,用于存放后继元素的存储地址。
所以链式存储结构通常借助于程序设计语言的指针类型来描述。
5.选择题
(1)在数据结构中,从逻辑上可以把数据结构分成()。
A.动态结构和静态结构B.紧凑结构和非紧凑结构
C.线性结构和非线性结构D.内部结构和外部结构
C
(2)与数据元素本身的形式、内容、相对位置、个数无关的是数据的()。
A.存储结构B.存储实现
C.逻辑结构D.运算实现
(3)通常要求同一逻辑结构中的所有数据元素具有相同的特性,这意味着()。
A.数据具有同一特点
B.不仅数据元素所包含的数据项的个数要相同,而且对应数据项的类型要一致
C.每个数据元素都一样
D.数据元素所包含的数据项的个数要相等
B
(4)以下说法正确的是()。
A.数据元素是数据的最小单位
B.数据项是数据的基本单位
C.数据结构是带有结构的各数据项的集合
D.一些表面上很不相同的数据可以有相同的逻辑结构
D
解释:
数据元素是数据的基本单位,数据项是数据的最小单位,数据结构是带有结构的各数据元素的集合。
(5)算法的时间复杂度取决于()。
A.问题的规模B.待处理数据的初态
C.计算机的配置D.A和B
算法的时间复杂度不仅与问题的规模有关,还与问题的其他因素有关。
如某些排序的算法,其执行时间与待排序记录的初始状态有关。
为此,有时会对算法有最好、最坏以及平均时间复杂度的评价。
(6)以下数据结构中,()是非线性数据结构
A.树B.字符串C.队列D.栈
A
6.试分析下面各程序段的时间复杂度。
(1)x=90;
y=100;
while(y>
0)
if(x>
100)
{x=x-10;
y--;
}
elsex++;
O
(1)
程序的执行次数为常数阶。
(2)for(i=0;
i<
n;
i++)
for(j=0;
j<
m;
j++)
a[i][j]=0;
O(m*n)
语句a[i][j]=0;
的执行次数为m*n。
(3)s=0;
fori=0;
for(j=0;
s+=B[i][j];
sum=s;
O(n2)
语句s+=B[i][j];
的执行次数为n2。
(4)i=1;
while(i<
=n)
i=i*3;
O(log3n)
语句i=i*3;
的执行次数为
⎣log3n⎦。
(5)x=0;
for(i=1;
for(j=1;
=n-i;
x++;
语句x++;
的执行次数为n-1+n-2+……+1=n(n-1)/2。
(6)x=n;
//n>
1
y=0;
while(x≥(y+1)*(y+1))
y++;
O(
)
语句y++;
⎣
⎦。
第2章线性表
1.选择题
(1)顺序表中第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。
A.110B.108C.100D.120
顺序表中的数据连续存储,所以第5个元素的地址为:
100+2*4=108。
(2)在n个结点的顺序表中,算法的时间复杂度是O
(1)的操作是()。
A.访问第i个结点(1≤i≤n)和求第i个结点的直接前驱(2≤i≤n)
B.在第i个结点后插入一个新结点(1≤i≤n)
C.删除第i个结点(1≤i≤n)
D.将n个结点从小到大排序
在顺序表中插入一个结点的时间复杂度都是O(n2),排序的时间复杂度为O(n2)或O(nlog2n)。
顺序表是一种随机存取结构,访问第i个结点和求第i个结点的直接前驱都可以直接通过数组的下标直接定位,时间复杂度是O
(1)。
(3)向一个有127个元素的顺序表中插入一个新元素并保持原来顺序不变,平均要移动的元素个数为()。
A.8B.63.5C.63D.7
平均要移动的元素个数为:
n/2。
(4)链接存储的存储结构所占存储空间()。
A.分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针
B.只有一部分,存放结点值
C.只有一部分,存储表示结点间关系的指针
D.分两部分,一部分存放结点值,另一部分存放结点所占单元数
(5)线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。
A.必须是连续的B.部分地址必须是连续的
C.一定是不连续的D.连续或不连续都可以
(6)线性表L在()情况下适用于使用链式结构实现。
A.需经常修改L中的结点值B.需不断对L进行删除插入
C.L中含有大量的结点D.L中结点结构复杂
链表最大的优点在于插入和删除时不需要移动数据,直接修改指针即可。
(7)单链表的存储密度()。
A.大于1B.等于1C.小于1D.不能确定
存储密度是指一个结点数据本身所占的存储空间和整个结点所占的存储空间之比,假设单链表一个结点本身所占的空间为D,指针域所占的空间为N,则存储密度为:
D/(D+N),一定小于1。
(8)将两个各有n个元素的有序表归并成一个有序表,其最少的比较次数是()。
A.nB.2n-1C.2nD.n-1
当第一个有序表中所有的元素都小于(或大于)第二个表中的元素,只需要用第二个表中的第一个元素依次与第一个表的元素比较,总计比较n次。
(9)在一个长度为n的顺序表中,在第i个元素(1≤i≤n+1)之前插入一个新元素时须向后移动()个元素。
A.n-iB.n-i+1C.n-i-1D.I
(10)线性表L=(a1,a2,……an),下列说法正确的是()。
A.每个元素都有一个直接前驱和一个直接后继
B.线性表中至少有一个元素
C.表中诸元素的排列必须是由小到大或由大到小
D.除第一个和最后一个元素外,其余每个元素都有一个且仅有一个直接前驱和直接后继。
(11)创建一个包括n个结点的有序单链表的时间复杂度是()。
A.O
(1)B.O(n)C.O(n2)D.O(nlog2n)
单链表创建的时间复杂度是O(n),而要建立一个有序的单链表,则每生成一个新结点时需要和已有的结点进行比较,确定合适的插入位置,所以时间复杂度是O(n2)。
(12)以下说法错误的是()。
A.求表长、定位这两种运算在采用顺序存储结构时实现的效率不比采用链式存储结构时实现的效率低
B.顺序存储的线性表可以随机存取
C.由于顺序存储要求连续的存储区域,所以在存储管理上不够灵活
D.线性表的链式存储结构优于顺序存储结构
链式存储结构和顺序存储结构各有优缺点,有不同的适用场合。
(13)在单链表中,要将s所指结点插入到p所指结点之后,其语句应为()。
A.s->
next=p+1;
p->
next=s;
B.(*p).next=s;
(*s).next=(*p).next;
C.s->
next=p->
next;
next=s->
D.s->
(14)在双向链表存储结构中,删除p所指的结点时须修改指针()。
A.p->
next->
prior=p->
prior;
prior->
B.p->
prior=p;
C.p->
next=p;
D.p->
(15)在双向循环链表中,在p指针所指的结点后插入q所指向的新结点,其修改指针的操作是()。
next=q;
q->
prior=q;
C.q->
D.q->
第3章栈和队列
(1)若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在()种情况。
A.5,4,3,2,1B.2,1,5,4,3C.4,3,1,2,5
D.2,3,5,4,1
栈是后进先出的线性表,不难发现C选项中元素1比元素2先出栈,违背了栈的后进先出原则,所以不可能出现C选项所示的情况。
(2)若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为()。
A.iB.n-iC.n-i+1D.不确定
栈是后进先出的线性表,一个栈的入栈序列是1,2,3,…,n,而输出序列的第一个元素为n,说明1,2,3,…,n一次性全部进栈,再进行输出,所以p1=n,p2=n-1,…,pi=n-i+1。
(3)数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为()。
A.r-fB.(n+f-r)%nC.n+r-fD.(n+r-f)%n
对于非循环队列,尾指针和头指针的差值便是队列的长度,而对于循环队列,差值可能为负数,所以需要将差值加上MAXSIZE(本题为n),然后与MAXSIZE(本题为n)求余,即(n+r-f)%n。
(4)链式栈结点为:
(data,link),top指向栈顶.若想摘除栈顶结点,并将删除结点的值保存到x中,则应执行操作()。
A.x=top->
data;
top=top->
link;
B.top=top->
link;
x=top->
C.x=top;
D.x=top->
data将结点的值保存到x中,top=top->
link栈顶指针指向栈顶下一结点,即摘除栈顶结点。
(5)设有一个递归算法如下
intfact(intn){
//n大于等于0
if(n<
=0)return1;
elsereturnn*fact(n-1);
}
则计算fact(n)需要调用该函数的次数为()。
A.
n+1
B.
n-1
C.n
D.n+2
特殊值法。
设n=0,易知仅调用一次fact(n)函数,故选A。
(6)栈在
()中有所应用。
A.递归调用B.函数调用C.表达式求值D.前三个选项都有
递归调用、函数调用、表达式求值均用到了栈的后进先出性质。
(7)为解决计算机主机与打印机间速度不匹配问题,通常设一个打印数据缓冲区。
主机将要输出的数据依次写入该缓冲区,而打印机则依次从该缓冲区中取出数据。
该缓冲区的逻辑结构应该是()。
A.队列B.栈C.线性表D.有序表
解决缓冲区问题应利用一种先进先出的线性表,而队列正是一种先进先出的线性表。
(8)设栈S和队列Q的初始状态为空,元素e1、e2、e3、e4、e5和e6依次进入栈S,一个元素出栈后即进入Q,若6个元素出队的序列是e2、e4、e3、e6、e5和e1,则栈S的容量至少应该是( )。
A.2B.3C.4D.6
元素出队的序列是e2、e4、e3、e6、e5和e1,可知元素入队的序列是e2、e4、e3、e6、e5和e1,即元素出栈的序列也是e2、e4、e3、e6、e5和e1,而元素e1、e2、e3、e4、e5和e6依次进入栈,易知栈S中最多同时存在3个元素,故栈S的容量至少为3。
(9)若一个栈以向量V[1..n]存储,初始栈顶指针top设为n+1,则元素x进栈的正确操作是()。
A.top++;
V[top]=x;
B.V[top]=x;
top++;
C.top--;
D.V[top]=x;
top--;
初始栈顶指针top为n+1,说明元素从数组向量的高端地址进栈,又因为元素存储在向量空间V[1..n]中,所以进栈时top指针先下移变为n,之后将元素x存储在V[n]。
(10)设计一个判别表达式中左,右括号是否配对出现的算法,采用( )数据结构最佳。
A.线性表的顺序存储结构B.队列
C.线性表的链式存储结构D.栈
利用栈的后进先出原则。
(11)用链接方式存储的队列,在进行删除运算时( )。
A.仅修改头指针B.仅修改尾指针
C.头、尾指针都要修改D.头、尾指针可能都要修改
一般情况下只修改头指针,但是,当删除的是队列中最后一个元素时,队尾指针也丢失了,因此需对队尾指针重新赋值。
(12)循环队列存储在数组A[0..m]中,则入队时的操作为( )。
A.rear=rear+1B.rear=(rear+1)%(m-1)
C.rear=(rear+1)%mD.rear=(rear+1)%(m+1)
数组A[0..m]中共含有m+1个元素,故在求模运算时应除以m+1。
(13)最大容量为n的循环队列,队尾指针是rear,队头是front,则队空的条件是( )。
A.(rear+1)%n==frontB.rear==front
C.rear+1==frontD.(rear-l)%n==front
最大容量为n的循环队列,队满条件是(rear+1)%n==front,队空条件是rear==front。
(14)栈和队列的共同点是( )。
A.都是先进先出B.都是先进后出
C.只允许在端点处插入和删除元素D.没有共同点
栈只允许在栈顶处进行插入和删除元素,队列只允许在队尾插入元素和在队头删除元素。
(15)一个递归算法必须包括( )。
A.递归部分B.终止条件和递归部分
C.迭代部分D.终止条件和迭代部分
第4章串、数组和广义表
(1)串是一种特殊的线性表,其特殊性体现在()。
A.可以顺序存储B.数据元素是一个字符
C.可以链式存储D.数据元素可以是多个字符若
(2)串下面关于串的的叙述中,()是不正确的?
A.串是字符的有限序列B.空串是由空格构成的串
C.模式匹配是串的一种重要运算D.串既可以采用顺序存储,也可以采用链式存储
空格常常是串的字符集合中的一个元素,有一个或多个空格组成的串成为空格串,零个字符的串成为空串,其长度为零。
(3)串“ababaaababaa”的next数组为()。
A.0B.0C.0D.02345
(4)串“ababaabab”的nextval为()。
A.0B.0C.0D.0
(5)串的长度是指()。
A.串中所含不同字母的个数B.串中所含字符的个数
C.串中所含不同字符的个数D.串中所含非空格字符的个数
串中字符的数目称为串的长度。
(6)假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=()。
A.808B.818C.1010D.1020
以行序为主,则LOC[5,5]=[(5-1)*100+(5-1)]*2+10=818。
(7)设有数组A[i,j],数组的每个元素长度为3字节,i的值为1到8,j的值为1到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为()。
A.BA+141B.BA+180C.BA+222D.BA+225
以列序为主,则LOC[5,8]=[(8-1)*8+(5-1)]*3+BA=BA+180。
(8)设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为()。
A.13B.32C.33D.40
(9)若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(i<
j)的位置k的关系为()。
A.i*(i-1)/2+jB.j*(j-1)/2+iC.i*(i+1)/2+jD.j*(j+1)/2+i
(10)二维数组A的每个元素是由10个字符组成的串,其行下标i=0,1,…,8,列下标j=1,2,…,10。
若A按行先存储,元素A[8,5]的起始地址与当A按列先存储时的元素()的起始地址相同。
设每个字符占一个字节。
A.A[8,5]B.A[3,10]C.A[5,8]D.A[0,9]
设数组从内存首地址M开始顺序存放,若数组按行先存储,元素A[8,5]的起始地址为:
M+[(8-0)*10+(5-1)]*1=M+84;
若数组按列先存储,易计算出元素A[3,10]的起始地址为:
M+[(10-1)*9+(3-0)]*1=M+84。
故选B。
(11)设二维数组A[1..m,1..n](即m行n列)按行存储在数组B[1..m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为()。
A.(i-1)*n+jB.(i-1)*n+j-1C.i*(j-1)D.j*m+i-1
取i=j=1,易知A[1,1]的的下标为1,四个选项中仅有A选项能确定的值为1,故选A。
(12)数组A[0..4,-1..-3,5..7]中含有元素的个数()。
A.55B.45C.36D.16
共有5*3*3=45个元素。
(13)广义表A=(a,b,(c,d),(e,(f,g))),则Head(Tail(Head(Tail(Tail(A)))))的值为()。
A.(g)B.(d)C.cD.d
Tail(A)=(b,(c,d),(e,(f,g)));
Tail(Tail(A))=((c,d),(e,(f,g)));
Head(Tail(Tail(A)))=(c,d);
Tail(Head(Tail(Tail(A))))=(d);
Head(Tail(Head(Tail(Tail(A)))))=d。
(14)广义表((a,b,c,d))的表头是(),表尾是()。
A.aB.()C.(a,b,c,d)D.(b,c,d)
C、B
表头为非空广义表的第一个元素,可以是一个单原子,也可以是一个子表,((a,b,c,d))的表头为一个子表(a,b,c,d);
表尾为除去表头之外,由其余元素构成的表,表为一定是个广义表,((a,b,c,d))的表尾为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据结构 课后 答案