轮系Word文件下载.docx
- 文档编号:22202453
- 上传时间:2023-02-03
- 格式:DOCX
- 页数:17
- 大小:323.40KB
轮系Word文件下载.docx
《轮系Word文件下载.docx》由会员分享,可在线阅读,更多相关《轮系Word文件下载.docx(17页珍藏版)》请在冰豆网上搜索。
由分针M到时针H的传动路线所确定的定轴轮系为:
5(M)—6(7)—8(H),其传动比是:
现在,所需求解的齿数为z4、z6、z8,即有3个未知参量,而所提供的方程只有两个,通常同学们会根据秒针S和时针H的关系来建立第3个方程,但这是不能奏效的,因为列出的方程并非独立,而是与方程(a)和方程(b)相关的。
观察图1可以发现,轮系5—6(7)—8为一回归轮系,即r5+r6=r7+r8,由此可得
联立(a)、(b)、(c)三式,可解得
例2在图2所示的轮系中,已知z1=z2’=100,z2=101,z3=99。
试求传动比iH1及i21。
图2
该轮系为一行星轮系,且组成该轮系的齿轮均为平面齿轮,因此不仅可计算各中心轮、系杆之间的传动比,也能够求出行星轮与它们之间的传动比。
解:
由行星轮系的传动比计算公式(9-3)得
整理得
本例也说明了采用周转轮系可以获得很大的传动比。
当然,这种轮系的效率很低。
若齿轮1为主动件,必将发生自锁现象。
进一步思考,若将齿轮3的齿数由99改为100,则
即当系杆转100转时,齿轮1反向转1转。
由此可见,对于同一结构组成的行星轮系,当某一轮齿数作较小变动时,不仅可引起从动轮转速的较大变化,甚至转向也可改变。
例3 在图3所示的轮系中,已知z1=20、z2=24、z2’=30、z3=40,n1=200r/min,n3=-100r/min,求nH。
图3
该轮系是由圆锥齿轮组成的周转轮系,其转化机构为一空间定轴轮系,因此必须先用箭头表示转化机构中各轮的转向关系,然后才能确定周转轮系传动比计算公式中齿数连乘积之比前的正负号。
由图可见,n1H与n3H转向相同,故
必须注意,本例中行星轮2(2’)的轴线与主轴线不平行,因此,不能应用周转轮系传动比的计算公式来计算n2。
另外,周转轮系中,各中心轮及系杆的实际转向,并不等同于转化机构中各轮的转向关系,应由实际计算结果的正负值判定。
本例中系杆的转速为600r/min,转向与齿轮3相同。
例4在图4所示的复合轮系中,已知各轮齿数为z1=40,z2=40,z2’=20,z3=18,z4=24,z4’=76,z5=20,z6=36,求i16。
图4
思路与解题技巧:
该轮系是由一周转轮系和一定轴轮系并联而成的复合轮系。
由于齿轮5的回转轴线不固定,因此齿轮5为行星轮;
支撑行星轮5的构件H为系杆;
与行星轮5直接啮合的齿轮6和齿轮4’,它们的回转轴线是固定的,且与系杆的回转轴线一致,故为中心轮。
这样,由行星轮5、系杆H、中心轮6和4’组成了自由度为2的差动轮系。
剩下的轮系即为定轴轮系,在定轴轮系中,齿轮1的运动输入到差动轮系的系杆H,齿轮4的运动输入到差动轮系的一个中心轮4’。
这样就构成了一个并联组合的复合轮系。
(一)分解轮系
1)5、H、6、4’------差动轮系
2)1、2(2’)、3、4-------定轴轮系
(二)列方程
(三)解方程组
将
(1)式左端的分子、分母同除以ωH,并将ωH=ω1、ω4’=ω4代入
(1)式,整理后得
从而i16=1/i61=0.205
例5在图5所示的轮系中,已知z2=z3=z4=18、z2’=z3’=40。
设各齿轮的模数、压力角均相等,并为标准齿轮传动。
求齿轮1的齿数z1及传动比i1H。
图5
观察图5可以发现,齿轮2(2’)、齿轮3(3’)的轴线都是运动的,所以这两个齿轮均为行星轮,但是支撑它们轴线的是同一个构件H,即系杆,它们与中心轮1和固定中心轮4构成了一个行星轮系。
这就是说在一个复合轮系中,周转轮系的个数并不取决于行星轮的数目,而是决定于系杆的个数。
本例另一考点是求解周转轮系中某一齿轮的齿数。
为了解决这一问题,必须利用这样一个特性:
在任一周转轮系中,各个中心轮和系杆都是绕同一固定轴线回转的,该轴线称为主轴线。
由此,在本例中可得方程:
r1-r2-r2’+r3-r3’+r4=0,解此方程即可求得齿数z1。
例6在图6所示的轮系中,已知各轮齿数分别为z1=30,z1’=35,z2=18,z3=71,z3’=78,z4=30,z5=90,z6=30,z7=18,求轮系的传动比i1H。
图6
本轮系是由多个周转轮系组成的复合轮系,因此解题的关键是将这些基本轮系正确地分离出来。
观察图6可以发现齿轮2的轴线是不固定的,因此齿轮2为行星轮,而支撑它轴线的构件H就是系杆,与行星轮直接啮合的齿轮1和齿轮3为中心轮,它们组成了一个周转轮系。
用同样的方法可以分解剩余的两个周转轮系。
1)2、H、1’、3------周转轮系
2)4、3、1、5--------周转轮系
3)6、5、7、3’-------行星轮系
(3)解方程组
将(4)式代入(5)式整理后得
例7在图7所示的轮系中,已知z1=25,z1’=24,z1’’=20,z2=25,z2’=25,z3=75,z4=18,z5=18,z5’=24,z6=40,n6=54r/min。
求n3。
图7
图示为一复合轮系,其中由行星轮2(2’)、系杆H、中心轮1、3组成了差动轮系,该差动轮系的两个运动是由剩下的两个定轴轮系z6、z1’’和z6、z1’’(z1’)、z5(z5’)、z4给出的。
1)2(2’)、H、1、3------差动轮系
2)z6、z1’’------定轴轮系
3)z6、z1’’(z1’)、z5(z5’)、z4-------定轴轮系
本题还可按下述方法求解,由式(9-5)得
例8在图8所示的轮系中,已知各轮齿数z1=20,z2=30,z2’=20,z3=80,z4=70,求i14。
图8
这是一个3K型的行星轮系,一般来说,任何一个3K型周转轮系均可分解为两个独立的2K—H型周转轮系。
1)2(2’)、H、1、3------行星轮系
2)2(2’)、H、4、3------行星轮系
例9在图9所示的轮系中,设各齿轮模数、压力角均相同,且为标准齿轮传动,z1=z3=z4=z6=25,z1’=75,z3’=z5’=40,z4’=20,z5=30。
求i6H及构件H的转向和齿轮2的齿数z2。
该轮系是由一3K型差动轮系和定轴轮系并联而成的复合轮系。
应该注意的是每一个3K型周转轮系均可分解成两个独立的2K—H型周转轮系,因此可以列出两个独立的方程。
另外,在求解齿轮2的齿数时,可以按照齿轮1(1’)和齿轮5’(5)必定绕同一轴线运转的要求(即满足同心条件)来确定。
图9
1)4(4’)、H、1’、5、6------3K型差动轮系
2)1、2、3(3’)、5’------定轴轮系
系杆H的转向与齿轮6的转向相反。
由(4)式
例10在图10所示的复合轮系中,已知z1=z4=17,z3=z6=51,n1=150r/min,求nH2。
图10
这是由两个行星轮系串联而成的复合轮系。
1)2、H1、1、3------行星轮系
2)5、H2、4、6------行星轮系
代入各轮齿数,由
(1)式得
由
(2)式得
例11在图11所示的轮系中,已知z1=z2=20,z3=60,z4=90,z5=210,电机轴与齿轮1轴相联,电机外壳固装在齿轮3上,电机转速为nd=1440r/min,求n1。
图11
该轮系的特点是由行星轮2、系杆H1、中心轮1和3所组成的周转轮系是安装在一活动构件H2上,而该活动构件(即系杆H2)与行星轮4及固定中心轮5组成了另一行星轮系。
如果给整个轮系一个与构件H2相反的运动,使它转化成固定构件,则转化后的轮系就可分解为一个典型的2K—H型行星轮系(2、H1、1、3)和一个定轴轮系(齿轮4、5)。
2)4、5------定轴轮系
(注:
以上两轮系是相对于构件H2转化为固定构件后划分的)
根据本题轮系的结构可知,n1不是电机的转速,因为电机壳体也在转动,本题所给转速nd实际上是电机转子相对于壳体的转速,即
电机转子的转向和壳体的转向是相反的。
例12图12所示为组合机床分度工作台驱动系统中的行星轮系,已知z1=2(右旋)、z2=46、z3=18、z4=28、z5=18、z6=28,求i16及齿轮6的转向。
图12
这是一个带有蜗杆蜗轮传动的复合轮系,解题时首先应将各基本轮系分离出来。
可以发现,齿轮4(5)的回转轴线是不固定的,这是一个行星轮,支撑它轴线的构件是蜗轮2,所以蜗轮2便是系杆,与行星轮直接啮合的齿轮6和齿轮3的回转轴线是固定的,且与系杆(即蜗轮2)的回转轴线相同,故它们便是中心轮。
由于中心轮3是固定的,所以它们构成了一个行星轮系。
剩下的蜗杆和蜗轮组成定轴轮系。
1)4(5)、2、6、3------行星轮系
2)1、2------定轴轮系
(三)求方程组
齿轮6的转向根据传动比i26为正可知,与蜗轮2的转向是相同的。
而蜗轮2的转向按照蜗杆蜗轮的相对转向关系判别法则可确定为逆时针方向。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轮系