高中导数题型总结Word下载.docx
- 文档编号:22154643
- 上传时间:2023-02-02
- 格式:DOCX
- 页数:10
- 大小:18.42KB
高中导数题型总结Word下载.docx
《高中导数题型总结Word下载.docx》由会员分享,可在线阅读,更多相关《高中导数题型总结Word下载.docx(10页珍藏版)》请在冰豆网上搜索。
变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:
设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,
(1)若在区间上为“凸函数”,求m的取值范围;
(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.
解:
由函数得
(1)在区间上为“凸函数”,
则在区间[0,3]上恒成立
解法一:
从二次函数的区间最值入手:
等价于
解法二:
分离变量法:
∵当时,恒成立,
当时,恒成立
等价于的最大值()恒成立,
而()是增函数,则
(2)∵当时在区间上都为“凸函数”
则等价于当时恒成立
变更主元法
再等价于在恒成立(视为关于m的一次函数最值问题)
请同学们参看xx第三次周考:
例2:
设函数
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式恒成立,求a的取值范围.
(二次函数区间最值的例子)
解:
(Ⅰ)
令得的单调递增区间为(a,3a)
令得的单调递减区间为(-,a)和(3a,+)
∴当x=a时,极小值=当x=3a时,极大值=b.
(Ⅱ)由||≤a,得:
对任意的恒成立①
则等价于这个二次函数的对称轴(放缩法)
即定义域在对称轴的右边,这个二次函数的最值问题:
单调增函数的最值问题。
上是增函数.(9分)
∴
于是,对任意,不等式①恒成立,等价于
又∴
点评:
重视二次函数区间最值求法:
对称轴(重视单调区间)与定义域的关系
第三种:
构造函数求最值
题型特征:
恒成立恒成立;
从而转化为第一、二种题型
例3;
已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;
(Ⅱ)当时,求的值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
(Ⅰ)∴,解得
(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减
又
∴的值域是
(Ⅲ)令
思路1:
要使恒成立,只需,即分离变量
思路2:
二次函数区间最值
二、题型一:
已知函数在某个区间上的单调性求参数的范围
解法1:
转化为在给定区间上恒成立,回归基础题型
解法2:
利用子区间(即子集思想);
首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:
前者是后者的子集
例4:
已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
.
(Ⅰ)∵是偶函数,∴.此时,,
令,解得:
列表如下:
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
+
0
-
递增
极大值
递减
极小值
可知:
的极大值为,的极小值为.
(Ⅱ)∵函数是上的单调函数,
∴,在给定区间R上恒成立判别式法
则解得:
综上,的取值范围是.
例5、已知函数
(I)求的单调区间;
(II)若在[0,1]上单调递增,求a的取值范围。
子集思想
(I)
1、
当且仅当时取“=”号,单调递增。
2、
单调增区间:
(II)当则是上述增区间的子集:
1、时,单调递增符合题意
2、,
综上,a的取值范围是[0,1]。
三、题型二:
根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
由趋势图结合交点个数或根的个数写不等式(组);
主要看极大值和极小值与0的关系;
解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
求实数的取值范围;
若函数与的图象有三个不同的交点,求实数的取值范围.
(1)由题意∵在区间上为增函数,
∴在区间上恒成立(分离变量法)
即恒成立,又,∴,故∴的取值范围为
(2)设,
令得或由
(1)知,
①当时,,在R上递增,显然不合题意…
②当时,,随的变化情况如下表:
—
↗
↘
由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得
综上,所求的取值范围为
根的个数知道,部分根可求或已知。
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在
(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?
若存在,求出实数的取值范围;
否则说明理由。
高1考1资1源2网
(1)∵的图像过原点,则,
又∵是的极值点,则
(2)设函数的图像与函数的图像恒存在含的三个不同交点,
等价于有含的三个根,即:
得:
即:
恒有含的三个不等实根
(计算难点来了:
)有含的根,
则必可分解为,故用添项配凑法因式分解,
十字相乘法分解:
恒有含的三个不等实根
等价于有两个不等于-1的不等实根。
题2:
切线的条数问题====以切点为数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:
(1)的解析式;
(2)若过点可作曲线的三条切线,求实数的取值范围.
(1)由题意得:
∴在上;
在上;
在上
因此在处取得极小值
∴①,②,③
由①②③联立得:
,∴
(2)设切点Q,
过
令,
求得:
,方程有三个根。
需:
故:
;
因此所求实数的范围为:
题3:
已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:
根分布或判别式法
例8、
函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,
=x2-7x+10,令,解得或.
令,解得
可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.
(Ⅱ)=x2-(m+3)x+m+6,
要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)
根分布问题:
则,解得m>
3
例9、已知函数,
(1)求的单调区间;
(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
(1)
当时,令解得,令解得,
所以的递增区间为,递减区间为.
当时,同理可得的递增区间为,递减区间为.
(2)有且仅有3个极值点
=0有3个根,则或,
方程有两个非零实根,所以
或
而当或时可证函数有且仅有3个极值点
其它例题:
1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数的取值范围.
令=0,得
因为,所以可得下表:
极大
因此必为最大值,∴因此,,
即,∴,∴
(Ⅱ)∵,∴等价于,
令,则问题就是在上恒成立时,求实数的取值范围,
为此只需,即,
解得,所以所求实数的取值范围是[0,1].
2、(根分布与线性规划例子)
(1)已知函数
(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;
(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:
3的两部分,求直线L的方程.
(Ⅰ).由,函数在时有极值,
∵∴
又∵在处的切线与直线平行,
∴故
∴…………………….7分
(Ⅱ)解法一:
由及在取得极大值且在取得极小值,
∴即令,则
∴∴故点所在平面区域S为如图△ABC,
易得,,,,,
同时DE为△ABC的中位线,
∴所求一条直线L的方程为:
另一种情况设不垂直于x轴的直线L也将S分为面积比为1:
3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,
由得点F的横坐标为:
由得点G的横坐标为:
∴即
解得:
或(舍去)故这时直线方程为:
综上,所求直线方程为:
或.…………….………….12分
(Ⅱ)解法二:
同时DE为△ABC的中位线,∴所求一条直线L的方程为:
另一种情况由于直线BO方程为:
设直线BO与AC交于H,
由得直线L与AC交点为:
∵,,
∴所求直线方程为:
或
3、(根的个数问题)已知函数的图象如图所示。
(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
由题知:
(Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0
得
(Ⅱ)依题意=–3且f
(2)=5
解得a=1,b=–6
所以f(x)=x3–6x2+9x+3
(Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>
=3ax2+2bx–3a–2b由=0b=–9a①
若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<
8a
由①②得–25a+3<
8a<
7a+3
所以当
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
………………………………………………………………………2分
令得
∴的单调递增区间为,,单调递减区间为…………5分
(2)由题得
即
令……………………6分
令得或……………………………………………7分
当即时
此时,,,有一个交点;
…………………………9分
当即时,
∴当即时,有一个交点;
当即时,有两个交点;
当时,,有一个交点.………………………13分
综上可知,当或时,有一个交点;
当时,有两个交点.…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ)若函数在处有极值,求的解析式;
(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 导数 题型 总结