构建数学课堂教学的基本框架Word下载.docx
- 文档编号:22127610
- 上传时间:2023-02-02
- 格式:DOCX
- 页数:14
- 大小:39.13KB
构建数学课堂教学的基本框架Word下载.docx
《构建数学课堂教学的基本框架Word下载.docx》由会员分享,可在线阅读,更多相关《构建数学课堂教学的基本框架Word下载.docx(14页珍藏版)》请在冰豆网上搜索。
(3)用自己的语言描述长方体、正方体的相同点、不同点;
描述圆柱、圆锥的相同点、不同点;
描述棱柱、圆柱的相同点、不同点。
(4)说一说生活中哪些物体的形状类似于棱柱、圆柱、圆锥、球?
第三13页,《截一个几何体》
考虑地方特点:
课堂教学应根据学校和学生的具体情况来实行设计,所以在准备教学时,要充分考虑到学生的实际生活。
比如,第62页,《水位的变化》教材提供的是流花河的水文资料,我们的学生很多就住在湘江边上,并且每年夏天都会有涨水的情况。
所以,我们采用的是“湘江水文资料”(学生在综合实践课中已经收集、整理出来了),让学生自己提出问题,然后以小组的形式解决问题,学生综合使用有理数及其加、减法的相关知识,解决自己提出的实际问题,体会数学与现实生活的联系。
学生在活动中表现是那样的积极,那样的投入,让我体会到课改所带来的震撼。
(这节课在有理数的加减运算时学生出错极少)
湘江一周内的水位变化情况:
星期
1
2
3
4
5
6
7
水位变化/米
+0.20
+0.81
-0.35
+0.03
+0.28
-0.36
-0.01
与警戒水位的差
(1)把河流的警戒水位看作0,超过警戒水位记作“+”,用有理数将最高水位、警戒水位、平均水位、最低水位表示出来
(2)与警戒水位相比,本周每天的水位如何?
先解释,再表示出来。
(3)本周哪一天河流的水位最高?
哪一天河流的水位最低?
你是怎么得出来的?
(4)与上周末比,本周末河流水位上升了还是下降了?
(5)以警戒水位为0噗,用折线统计图表示本周的水位情况。
挖掘学生潜能:
在教学中学会放手,实施开放性的教学,给学生充分活动与展示的机会,学生的表现常常会让我们大吃一惊。
如在第11页《展开与折叠》中,让学生将一个正方体沿某些棱剪开,得到不同的平面图形,给学生充分活动的时间和空间,让他们通过想象、操作、交流比较得到展开后的图形的特征,学生不但剪出了十多种图形,并且发现:
6个面、6个正方形、3组2个不相邻的,上下、左右、前后相对的不能连在一起,这些,是我这个做教师的也没有想到的。
尊重学生的差异:
学生的理解水平与学习水平存有一定的差异,在教学中要考虑学生的个体差异,在情境的创设、探索研讨的展开、练习的安排等,尽可能地让所有学生都能主动参与,实现:
“不同的人在数学上得到不同的发展”,比如,第90页《字母能表示什么》,要学生探索搭2个、3个、10个、100个、x个正方形需要多根火柴棒?
有的学生用火柴棒摆,有的学生用笔画,有的观察找其中的规律,找出了五六种方法,最后用字母表示出来。
对学生不同的思考,我们都应该给予鼓励。
3、精心设计让学生探索交流的活动
前苏联数学教育家斯托利亚尔以前说过:
“数学教学应是数学活动的教学,让学生参与到数学活动之中,是学生获得发展的根本途径。
”数学活动能将动态的知识转化为动态的问题之中实行探索,在这个探索过程中,它把学生的手、脑、眼、口等各种器官调动起来,使抽象的数学变得更具体。
第104页,《合并同类项》,我设计了两个探索活动:
活动一:
1、出示一幅生活图片,图片上有苹果、梨、文具盒、钢笔、猫、狗等,让学生分类并说明理由。
2、幻灯打出六张卡片:
8n-7a2b2a2b6xy5n-3xy
如何将它们分类?
与同伴交流一下你为什么这么分类?
【教学说明:
创设情境将生活中的分类思想牵引到数学中来。
】
活动二:
幻灯打出:
(1)如何表示大长方形的面积?
学生回答:
8n+5n或(8+5)n
教师板书:
8n+5n=(8+5)n=13n
先利用图形面积问题,让学生体会合并同类项的含义,以及合并前后系数的变化。
(2)议一议:
8a+5a=
-7a2b+2a2b=
6xy-3xy=
说说你的理由。
让学生讨论得出利用分配律合并同类项的方法。
(3)如上面几个式子,把同类项合并成一项这就是合并同类项。
你们观察一下,在合并同类项前后,系数发生了什么变化?
字母呢?
合并同类项的方法:
系数相加,字母和字母的指数不变。
利用
(2)的结果,让学生通过观察思考,自己总结出合并同类项的法则。
活动一是从现实生活出发,把生活中的分类思想牵引到数学中来,让学生经历探索与交流的活动,自主地得出同类项的概念。
这样他们所学到的知识是真正属于他们自己的,而不是别人强加给他们的。
活动二是设置问题串,引导学生观察、思考、猜测、实验、探索与交流等,让学生经历从直观图形感受合并同类项的含义,到利用分配律得到合并同类项的方法,最后再观察归纳出合并同类项的法则的过程。
二、构建数学课堂教学的基本框架
课程改革之后如何实行课堂教学?
这是我们每位教师最关心的问题。
通过两年的教学实践,我们思索、研讨,终于从迷惑中慢慢地摸索出一些规律。
在数学课堂教学中,我们一般按:
“情境引入——探索研讨——应用拓展——回顾反思”的模式展开数学活动。
1、情境创设
新课程强调改变学生学习方式,倡导建立具有“主动参与、乐于探究、积极交往”等特征的新的学习方式。
其中,主动学习非常重要,它是一切有意义学习的基础。
而创设一个好的问题情境,把问题以学生感兴趣的形式表现出来,能迅速扣住学生的心。
学生有了兴趣,就有了主动探究的动力。
学生有了情感的投入,有了内在动力的支持,就能从学习中获得满足,从而积极主动的学习。
所以,教师在教学中要根据教学内容、教学目标和学生的实际,创设有助于学生自主学习的问题情境。
北师大版的数学新教材对每一个知识点都提出了一个情境,教学中我们能够表现教材提供的情境,比如:
案例1:
第72页,《有理数的乘方》
在教学中直接表现细胞分裂的问题:
某种细胞每过30分便由1个分裂成2个,经过5时,这种细胞由1个能分裂成多少个?
学生开始觉得很容易,认真去思考时,发现有一定的挑战性,从而产生了强烈的求知欲。
学生的探索:
方式一:
方式二:
8
9
10
16
32
64
128
256
512
1028
方式三:
1×
2=2
2×
2=4
4×
2=8
8×
2=16
……
方式四:
2=1028
学生在这个细胞分裂问题的探索过程中,感觉到了10个2相乘表示起来比较繁琐,这个时候,教师介绍:
10个2相乘能够表示为210,学生马上接受,并能举一反三,说出211、(-3)6、2n、an分别表示什么。
学生在这个情境中,不但了解了乘方的意义,并且感觉到乘方的概念不是别人强加给他的东西,而正是自己的需要,从而产生一种积极的学习动力。
案例2:
第15页,《从不同方向看》
模拟教材上的场景:
按图片的方式,把乒乓球、热水瓶、水杯放到讲台上,请两个同学站在讲台的两侧,让其他的同学猜,这两个同学分别看到了什么?
为什么?
学生喜欢玩游戏,争着要上讲台,没有被叫到的同学都很失望,这时,我顺势引导:
“你们自已在课桌上摆几个几何体,从不同的方向去看,你们看到了什么?
”
学生实验,纷纷发表看法:
“圆柱体从上面看是圆,从侧面看是柱子(曲面)”“正方体从上面看是正方形、前面看是正方形、侧面看还是正方形”“几个几何体摆在一起,有的被遮住了,从不同的方向看,所看到的几何体不同。
”“同一个几何体,从不同的方向看到的图形不同”……
看同学们都很兴奋,我趁热打铁,要求学生按第17页的图片上的方式用小立方块搭几何体,并从不同的方向去看,并把所看到的画出来。
原以为画三视图要求学生具有一定的空间想象力,对学生可能比较困难,没想到学生很轻松的就学会了三视图的画法。
下课后,有一个学生很得意的对我说:
“蒋老师,我发现球不管从哪个方向看都是一样的。
”他从学习中体会到了成功的喜悦。
因为地理位置不同,学生的生活经验不同,教师也能够借助教材提供的线索,创造性的设计出贴近学生生活实际的情境,比如:
案例3:
第44页,《有理数的加法》,考虑到我们的学生是农村学生,对“净胜球”的概念不了解,我设置了一个学生常玩的猜拳游戏:
赢一次记+1分,输一次记-1分,平局记0分,用式子表示出你的得分。
学生很快表示出:
1+0=1;
(-1)+0=-1;
1+(—1)=0;
(—1)+1=0;
1+1=2;
(—1)+(—1)=-2
在后面探索(-2)+3=?
时,有的学生的说理就是:
我在游戏中先输2次,然后赢3次,我的最终得分是+1分。
案例4:
第189页,《月球上有水吗》,第一次我按是教材表现的方式实行教学,发现学生的学习气氛不是很活跃,问原因,是学生觉得计算百分比、计算圆心角的度数太枯燥。
第二次在另一个班教学时,正好他们前一节课是借书课,有的学生上课了还不愿意把手中的课外书收起。
我灵机一动,问:
“你们喜欢看什么书?
”“小说、漫画、体育、科学……”学生七嘴八舌的回答。
我又说:
“图书馆理员刘老师要新购进一批书,为了想让每个同学都能看上自己喜爱的图书,你们能帮她调查一下同学们最喜欢的书吗?
”学生马上就兴奋了,全班投票,然后分组计票,全班票数汇总,列出统计表,最后画出扇形统计图。
在这个过程中,因为有兴趣,学生没有觉得计算枯燥,他们不但学会了扇形统计图的制作方法,而且体验到了如何收集数据。
很多同学在数学日记中写到,能够用数学知识为老师出主意,觉得很有意义,他们喜欢这样的数学课。
案例5:
《解直角三角形》
看到我们的课堂这样有趣,初三的教师也想试一试。
因为我们的学生有很多就住在湘江边上,我们一起设计了《解直角三角形》的应用第一课时的情境为“湘江二桥的斜拉索桥计算”,当放出湘江二桥的图片时,学生“哗”的一声,惊赞起来,后来上课教师说:
“这个节课学生非常投入,是上得最成功的。
”可见情境的力量非同小可。
2、探索研讨
在情境导入之后,教师是给学生一个自主探索过程,还是仅仅只利用情境作为一种吸引注意力的幌子,而后将知识灌输下去,这是传统教法与现行教法的分水岭之一。
给学生一个自主探索的过程,可能会延缓所谓的“教学进度”,但是没有给学生这个过程,学生的思维就不可能激活,学生的聪明才智就不可能得到发展,学生的创新水平就不可能得到提升,所以我们在教学中,一定要给学生自主探索的时间和空间。
比如在上述案例:
《从不同方向看》中,在课堂上,教师讲得很少,把时间和空间都留给了学生。
问题提出后,全是由学生在实践、思考、探索、交流,学生学得非常主动,画三视图是他们自己探索研讨的结果,而不是被动地接受教师的讲解。
又比如:
第90页,《字母能表示什么》
用“字母表示数”看似平常,却包含着丰富的内涵,是人类理解的一个重大进展。
字母表示数,人类经历了5次飞跃。
(1)是把字母看成是具体的东西;
(2)把字母看成是未知数;
(3)把字母装着看不见;
(4)把字母看成特定的数、不同的数;
(5)把字母看成变量。
这里,教材用问题串的形式表现了用字母表示数的过程。
教学中给学生充分的探究时间,让学生体会到由特例归纳出一般规律,并用字母表示一般规律的过程,从而培养其符号感。
学生用了五、六种方法来表示,如3x+1、4x-(x-1)、2x+(x+1)、4+3(x-1)、4x-(x-1),x+(x+1)+x等,每一种方法体现了学生的一种思考方式,而在表示过程中,他们也在逐步体会到x能表示什么,来实现思维的飞跃。
第11页,《展开与折叠》
将一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到哪些图形?
我让学生分小组探索,把剪出的不同图形贴到黑板上。
其它小组能够试着尝试是不是也能剪出来,怎么剪?
这实际上是培养学生空间观点的一个活动,在活动中,他们的空间想象力出乎我的意外。
学生不但剪出了十多种图形,还能找出其中的规律。
另外,学生的自主探索也不能太笼统太盲目,这样有可能会流于形式,学生并没有得到真正的发展,还有可能产生松懈的情绪。
教师注意要明确探索的问题,组织活动的形式。
第121页,在探索“两点确实一条直线”这个性质时,让学生动手做一做:
(1)过一点A能够画几条直线?
(2)过两点A、B能够画几条直线?
(3)过三点呢?
(4)如果你想将一根细木条固定在墙上,至少需要几个钉子?
通过问题串的形式,使学生活动的步骤非常清楚,通过操作,他们发现了直线的某些性质,并能使用到生活中。
他们甚至还探讨四点、五点、更多点……
第142页,《有趣的七巧板》
这节课是以活动形式表现,如果不事先设计好,在教学时就会没有程序,收不到好的效果。
我在教学中是这样实行的:
(1)回家准备一块12㎝×
12㎝的正方形硬纸板,按第142页画出图形,涂上你最喜爱的不同颜色;
(回家先准备好,让学生活动时间更多)
(2)介绍“东方魔板”,激发兴趣;
(“七巧板”是我们祖先的一项卓越创造,19世纪流传到西方,引起人们兴趣,称“东方魔方”,在讲述中突出“魔”)
(3)利用自制的七巧板拼出不同图案,交流设计意图;
(尽情拼,先拼后说意图,先有意图再拼。
)
(4)相互指出图中互相平行、垂直的线,找出锐角、直角、钝角;
(5)展示学生作品(把学生作品贴在黑板上,然后出了一期墙刊)
整个一节课在快乐中有序、有目的实行,学生兴趣达到高点。
他们从中感受到数学创造的无穷乐趣,原来数学是如此有趣。
探索研讨是学生水平与情感发展的一个重要环节,在学生自主探索与合作交流的过程中,教师要密切注重学生,注重所有的学生是否在积极地参与学习活动,注重小组讨论的进展情况,即时给予评价与点拨。
3、拓展应用
学生经历了自主探索与合作交流,从问题情境中建立了数学模型,接下来自然是应用与拓展。
教材设置有“想一想”、“做一做”、“随堂练习”等栏目,使学生熟悉巩固新学的知识、技能和方法。
还有“试一试”栏目,将知识进一步拓展。
另外,教师也能够挖掘数学知识与现实生活的联系,如学会负数的概念后让学生例举生活中所见的负数;
在学完轴对称后,让学生利用轴对称设计校徽、花边等。
还能够让学生深入思考,根据所学的知识去设计一个数学问题或者发现一个与现实生活中与之相关的问题。
如:
案例子1:
第59页,《有理数的加减混合运算》
在完成书上的游戏后,学生说这样游戏不好玩,还不如他来设计。
于是,我让学生为班会设计一个游戏,要求玩游戏时要用到有理数的加减运算。
有的同学设计了“24点”,有的同学设计了计算接龙,还有一个同学设计了扑克游戏:
一幅扑克,每人抽取一张。
红色为正数,黑色为负数,三个同学上台亮牌,如果谁手中的扑克与那三个同学的相加正好等于0,有奖。
看到学生的设计,足足让我这个做老师的激动不已,现在的孩子,只要给他们机会,他们的创造力真是不得了。
4、回顾反思
在教学中,教师应引导学生即时实行回顾反思,培养学生反思自己学习过程的习惯,发挥自我评价的作用。
在一节课的最后,教师能够有意识的引导学生实行知识的回顾,如“这节课你学会了什么?
”“你有什么收获?
”“还有什么疑问?
”“这节课你遇到过哪些问题?
你都解决了吗?
”比如:
第104页,在学习合并同类项时,学生谈到:
“通过这节课我知道了什么是同类项,就是所含的字母相同,并且相同字母的指数也相同,这样的项就是同类项。
我还知道了同类项能够合并,只要把系数相加就能够。
”他的谈话,就对本节课的内容实行了一次简单的小结。
在介绍新知识时,教师也能够引导学生对此反思质疑,比如:
第120页,在学习“线段、射线、直线”时的一个片断
教师在介绍完线段、射线、直线的表示方法后:
线段AB(线段BA)射线OM直线AB(直线BA)
师问:
你们还有什么疑问吗?
生1问:
射线OM可不可表示为射线AB?
生2答:
能够,只要把图中的O、M分别改为A、B。
生3问:
射线OM也能够叫做射线MO吗?
师答:
不能够。
在用符号表示射线时,规定端点字母写在前面。
现在你能告诉我射线OM与射线MO有什么区别吗?
生3答:
射线OM端点是点O,射线MO端点是点M。
生4补充:
射线OM与射线MO无限延长的方向正好相反。
师(竖起大拇指):
不错,你很善于思考!
生5问:
直线可不可只用直线上的一个点来表示?
师:
这个问题提得很好,让我们先完成做一做后,再来寻找答案。
教师组织学生完成做一做后,得出结论:
经过两点有且只有一条直线。
前面有一个遗留问题“直线可不可只用直线上的一个点来表示?
”现在你能回答吗?
生答:
直线不能够只用直线上的一个点表示。
因为经过一点能够作无数条直线,只用一点表示就不能确定表示哪条直线。
因为线段、射线、直线的表示方法是规定性的东西,所以在教学时采用了教师讲解的方式,但这种规定是否合理?
给学生一个反思质疑的空间,从而使学生更好的理解数学概念。
学生也会反思自己的思维过程、学习态度,实行自我评价。
第20页,数四边形的个数
这是一个习题,但在教学时,我把它放到课堂上让学生实行探讨,学生探索交流后得出答案,其中有两种规律能够清楚地数出四边形:
第一种:
正方形:
小——5个;
中——5个;
大——1个
长方形:
小——8个;
小小(小长方形加小正方形组成)——2个;
小中(小长方形加中正方形)——4个;
大——2个
共27个
第二种:
一个图形组成:
9个
两个图形组成:
6个
三个图形组成:
4个
四个图形组成:
1个
五个图形组成:
六个图形组成:
2个
七个图形组成:
共27个
学生反思中谈到:
“我知道做什么事不能蛮干,要找规律。
”“我以为我找到规律数出了四边形的个数非常了不起,但听了李雄的方法,我觉得也非常好,以后我一定不要太骄傲,虚心听别人的做法,这样我就能取得更大的进步。
上面是我们在课堂教学中的大体遵循的基本框架,教学的内容不同,学生的特点各异,课堂也会千变万化,教师要灵活地安排教学,促使学生在教师指导下生动活泼地、主动地、富有个性的学习。
三、案例:
《教育储蓄教学设计》(北师大版,《数学》七年级下,第174页)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 构建 数学 课堂教学 基本 框架