数字信号处理高西全丁玉美实验五FIR数字滤波器设计及软件实现.docx
- 文档编号:2209810
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:10
- 大小:145.48KB
数字信号处理高西全丁玉美实验五FIR数字滤波器设计及软件实现.docx
《数字信号处理高西全丁玉美实验五FIR数字滤波器设计及软件实现.docx》由会员分享,可在线阅读,更多相关《数字信号处理高西全丁玉美实验五FIR数字滤波器设计及软件实现.docx(10页珍藏版)》请在冰豆网上搜索。
数字信号处理高西全丁玉美实验五FIR数字滤波器设计及软件实现
数字信号处理实验
一、实验内容2
1.实验目的2
2.实验内容及步骤2
3.实验程序框图3
4.思考题4
5.信号产生函数清单4
6.思考题6
5.实验程序框图6
二、滤波器参数及实验程序清单7
1.滤波器参数选取5
2.实验程序清单5
三、实验程序运行结果7
四、思考题9
实验五:
FIR数字滤波器设计与软件实现
一、实验内容
1.实验目的
(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
2.实验内容及步骤
(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;
(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示;
图1具有加性噪声的信号x(t)及其频谱如图
(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。
先观察xt的频谱,确定滤波器指标参数。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。
并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(5)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数。
提示:
MATLAB函数fir1的功能及其调用格式请查阅教材;
采样频率Fs=1000Hz,采样周期T=1/Fs;
根据图1(b)和实验要求,可选择滤波器指标参数:
通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。
3.实验程序框图
实验程序框图如图2所示,供读者参考。
图2实验程序框图
4.思考题
(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?
请写出设计步骤.
(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。
(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低?
5.信号产生函数xtg程序清单
functionxt=xtg
N=1000;Fs=1000;T=1/Fs;Tp=N*T;
t=0:
T:
(N-1)*T;
fc=Fs/10;f0=fc/10;
mt=cos(2*pi*f0*t);
ct=cos(2*pi*fc*t);
xt=mt.*ct;
nt=2*rand(1,N)-1;
fp=120;fs=150;Rp=0.2;As=60;
fb=[fp,fs];m=[0,1];
dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];
[n,fo,mo,W]=remezord(fb,m,dev,Fs);
hn=remez(n,fo,mo,W);
yt=filter(hn,1,10*nt);
xt=xt+yt;
fst=fft(xt,N);k=0:
N-1;f=k/Tp;
subplot(2,1,1);
plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');
axis([0,Tp/5,min(xt),max(xt)]);title('(a)信号加噪声波形');
subplot(2,1,2);
plot(f,abs(fst)/max(abs(fst)));grid;title('(b)信号加噪声的频谱');
axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度');
二、滤波器参数及实验程序清单
1、滤波器参数选取
根据实验指导的提示③选择滤波器指标参数:
通带截止频率fp=120Hz,阻带截至频率fs=150Hz。
代入采样频率Fs=1000Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。
所以选取blackman窗函数。
与信号产生函数xtg相同,采样频率Fs=1000Hz。
按照图2所示的程序框图编写的实验程序为exp2.m。
2、实验程序清单
%FIR数字滤波器设计及软件实现
clearall;closeall;
N=1000;xt=xtg;%调用xtg产生信号xt,xt长度N=1000
fp=120;fs=150;Rp=0.2;As=60;Fs=1000;%输入给定指标
%用窗函数法设计滤波器
wc=(fp+fs)/Fs;%理想低通滤波器截止频率
B=2*pi*(fs-fp)/Fs;%过渡带宽度指标
Nb=ceil(11*pi/B);%blackman窗的长度N
hn=fir1(Nb-1,wc,blackman(Nb));
Hw=abs(fft(hn,1024));%求设计的滤波器频率特性
ywt=fftfilt(hn,xt,N);%调用函数fftfilt
%用窗函数法设计法的绘图
f=[0:
1023]*Fs/1024;
figure
(2)
subplot(2,1,1)
plot(f,20*log10(Hw/max(Hw)));grid;title('(a)低通滤波器幅频特性')
axis([0,Fs/2,-120,20]);
xlabel('f/Hz');ylabel('幅度')
t=[0:
N-1]/Fs;Tp=N/Fs;
subplot(2,1,2)
plot(t,ywt);grid;
axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_w(t)');
title('(b)滤除噪声后的信号波形')
%用等波纹最佳逼近法设计滤波器
fb=[fp,fs];m=[1,0];dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];
[Ne,fo,mo,W]=remezord(fb,m,dev,Fs);
hn=remez(Ne,fo,mo,W);%调用remez函数
Hw=abs(fft(hn,1024));%求滤波器频率特性
yet=fftfilt(hn,xt,N);%调用函数fftfilt
%等波纹设计法的绘图
figure(3);subplot(2,1,1)
f=[0:
1023]*Fs/1024;
plot(f,20*log10(Hw/max(Hw)));grid;title('(c)低通滤波器幅频特性')
axis([0,Fs/2,-80,10]);
xlabel('f/Hz');ylabel('幅度')
subplot(2,1,2);plot(t,yet);grid;
axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_e(t)');
title('(d)滤除噪声后的信号波形')
信号产生函数xtg程序清单:
functionxt=xtg
N=1000;Fs=1000;T=1/Fs;Tp=N*T;
t=0:
T:
(N-1)*T;
fc=Fs/10;f0=fc/10;
mt=cos(2*pi*f0*t);
ct=cos(2*pi*fc*t);
xt=mt.*ct;
nt=2*rand(1,N)-1;
fp=120;fs=150;Rp=0.2;As=60;
fb=[fp,fs];m=[0,1];
dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];
[n,fo,mo,W]=remezord(fb,m,dev,Fs);
hn=remez(n,fo,mo,W);
yt=filter(hn,1,10*nt);
%=====以下为绘图部分=====
xt=xt+yt;
fst=fft(xt,N);k=0:
N-1;f=k/Tp;
subplot(2,1,1);
plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');
axis([0,Tp/5,min(xt),max(xt)]);title('(a)信号加噪声波形');
subplot(2,1,2);
plot(f,abs(fst)/max(abs(fst)));grid;title('(b)信号加噪声的频谱');
axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度');
三、实验程序运行结果
用窗函数法设计滤波器,滤波器长度Nb=184。
滤波器损耗函数和滤波器输出yw(nT)分别如图3(a)和(b)所示。
用等波纹最佳逼近法设计滤波器,滤波器长度Ne=83。
滤波器损耗函数和滤波器输出ye(nT)分别如图3(c)和(d)所示。
两种方法设计的滤波器都能有效地从噪声中提取信号,但等波纹最佳逼近法设计的滤波器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图3(b)和(d)可以直观地看出时延差别。
图3实验程序exp2.m运行结果
四、思考题
(1)用窗函数法设计线性相位低通滤波器的设计步骤:
a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N;
b.构造希望逼近的频率响应函数;
c.计算hd(n);
d.加窗得到设计结果h(n)=hd(n)w(n)。
(2)希望逼近的理想带通滤波器的截止频率分别为:
(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低?
①用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;
②几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。
所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。
如本实验所选的blackman窗函数,其阻带最小衰减为74dB,而指标仅为60dB。
③用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其指标均匀分布,没有资源浪费,所以其阶数低得多。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 高西全丁玉美 实验 FIR 数字滤波器 设计 软件 实现