投资学第10版习题答案08Word文档下载推荐.docx
- 文档编号:22081611
- 上传时间:2023-02-02
- 格式:DOCX
- 页数:16
- 大小:163.43KB
投资学第10版习题答案08Word文档下载推荐.docx
《投资学第10版习题答案08Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《投资学第10版习题答案08Word文档下载推荐.docx(16页珍藏版)》请在冰豆网上搜索。
ri-rf=αi+βi(rM–rf)+ei
Equivalently,usingexcessreturns:
Ri=αi+βiRM+ei
Thevarianceoftherateofreturncanbedecomposedintothecomponents:
(l)Thevarianceduetothecommonmarketfactor:
(2)Thevarianceduetofirmspecificunanticipatedevents:
Inthismodel:
Thenumberofparameterestimatesis:
n=60estimatesofthemeanE(ri)
n=60estimatesofthesensitivitycoefficientβi
n=60estimatesofthefirm-specificvarianceσ2(ei)
1estimateofthemarketmeanE(rM)
1estimateofthemarketvariance
Therefore,intotal,182estimates.
Thesingleindexmodelreducesthetotalnumberofrequiredestimatesfrom1,890to182.Ingeneral,thenumberofparameterestimatesisreducedfrom:
6.a.Thestandarddeviationofeachindividualstockisgivenby:
SinceβA=0.8,βB=1.2,σ(eA)=30%,σ(eB)=40%,andσM=22%,weget:
σA=(0.82×
222+302)1/2=34.78%
σB=(1.22×
222+402)1/2=47.93%
b.Theexpectedrateofreturnonaportfolioistheweightedaverageoftheexpectedreturnsoftheindividualsecurities:
E(rP)=wA×
E(rA)+wB×
E(rB)+wf×
rf
E(rP)=(0.30×
13%)+(0.45×
18%)+(0.25×
8%)=14%
Thebetaofaportfolioissimilarlyaweightedaverageofthebetasoftheindividualsecurities:
βP=wA×
βA+wB×
βB+wf×
βf
βP=(0.30×
0.8)+(0.45×
1.2)+(0.25×
0.0)=0.78
Thevarianceofthisportfoliois:
where
isthesystematiccomponentand
isthenonsystematiccomponent.Sincetheresiduals(ei)areuncorrelated,thenonsystematicvarianceis:
=(0.302×
302)+(0.452×
402)+(0.252×
0)=405
whereσ2(eA)andσ2(eB)arethefirm-specific(nonsystematic)variancesofStocksAandB,andσ2(ef),thenonsystematicvarianceofT-bills,iszero.Theresidualstandarddeviationoftheportfolioisthus:
σ(eP)=(405)1/2=20.12%
Thetotalvarianceoftheportfolioisthen:
Thetotalstandarddeviationis26.45%.
7.a.Thetwofiguresdepictthestocks’securitycharacteristiclines(SCL).StockAhashigherfirm-specificriskbecausethedeviationsoftheobservationsfromtheSCLarelargerforStockAthanforStockB.DeviationsaremeasuredbytheverticaldistanceofeachobservationfromtheSCL.
b.BetaistheslopeoftheSCL,whichisthemeasureofsystematicrisk.TheSCLforStockBissteeper;
henceStockB’ssystematicriskisgreater.
c.
TheR2(orsquaredcorrelationcoefficient)oftheSCListheratiooftheexplainedvarianceofthestock’sreturntototalvariance,andthetotalvarianceisthesumoftheexplainedvarianceplustheunexplainedvariance(thestock’sresidualvariance):
SincetheexplainedvarianceforStockBisgreaterthanforStockA(theexplainedvarianceis
whichisgreatersinceitsbetaishigher),anditsresidualvariance
issmaller,itsR2ishigherthanStockA’s.
d.AlphaistheinterceptoftheSCLwiththeexpectedreturnaxis.StockAhasasmallpositivealphawhereasStockBhasanegativealpha;
hence,StockA’salphaislarger.
e.ThecorrelationcoefficientissimplythesquarerootofR2,soStockB’scorrelationwiththemarketishigher.
8.a.Firm-specificriskismeasuredbytheresidualstandarddeviation.Thus,stockAhasmorefirm-specificrisk:
10.3%>
9.1%
b.Marketriskismeasuredbybeta,theslopecoefficientoftheregression.Ahasalargerbetacoefficient:
1.2>
0.8
c.R2measuresthefractionoftotalvarianceofreturnexplainedbythemarketreturn.A’sR2islargerthanB’s:
0.576>
0.436
d.RewritingtheSCLequationintermsoftotalreturn(r)ratherthanexcessreturn(R):
Theinterceptisnowequalto:
Sincerf=6%,theinterceptwouldbe:
9.ThestandarddeviationofeachstockcanbederivedfromthefollowingequationforR2:
Therefore:
ForstockB:
10.ThesystematicriskforAis:
Thefirm-specificriskofA(theresidualvariance)isthedifferencebetweenA’stotalriskanditssystematicrisk:
980–196=784
ThesystematicriskforBis:
B’sfirm-specificrisk(residualvariance)is:
4,800–576=4,224
11.ThecovariancebetweenthereturnsofAandBis(sincetheresidualsareassumedtobeuncorrelated):
ThecorrelationcoefficientbetweenthereturnsofAandBis:
12.NotethatthecorrelationisthesquarerootofR2:
13.ForportfolioPwecancompute:
σP=[(0.62×
980)+(0.42×
4800)+(2×
0.4×
0.6×
336)]1/2=[1282.08]1/2=35.81%
βP=(0.6×
0.7)+(0.4×
1.2)=0.90
Cov(rP,rM)=βP
=0.90×
400=360
Thissameresultcanalsobeattainedusingthecovariancesoftheindividualstockswiththemarket:
Cov(rP,rM)=Cov(0.6rA+0.4rB,rM)=0.6×
Cov(rA,rM)+0.4×
Cov(rB,rM)
=(0.6×
280)+(0.4×
480)=360
14.NotethatthevarianceofT-billsiszero,andthecovarianceofT-billswithanyassetiszero.Therefore,forportfolioQ:
15.a.BetaBooksadjustsbetabytakingthesampleestimateofbetaandaveragingitwith1.0,usingtheweightsof2/3and1/3,asfollows:
adjustedbeta=[(2/3)×
1.24]+[(1/3)×
1.0]=1.16
b.Ifyouuseyourcurrentestimateofbetatobeβt–1=1.24,then
βt=0.3+(0.7×
1.24)=1.168
16.ForStockA:
StockAwouldbeagoodadditiontoawell-diversifiedportfolio.AshortpositioninStockBmaybedesirable.
17.a.
Alpha(α)
Expectedexcessreturn
αi=ri–[rf+βi×
(rM–rf)]
E(ri)–rf
αA=20%–[8%+1.3×
(16%–8%)]=1.6%
20%–8%=12%
αB=18%–[8%+1.8×
(16%–8%)]=–4.4%
18%–8%=10%
αC=17%–[8%+0.7×
(16%–8%)]=3.4%
17%–8%=9%
αD=12%–[8%+1.0×
(16%–8%)]=–4.0%
12%–8%=4%
StocksAandChavepositivealphas,whereasstocksBandDhavenegativealphas.
Theresidualvariancesare:
σ2(eA)=582=3,364
σ2(eB)=712=5,041
σ2(eC)=602=3,600
σ2(eD)=552=3,025
b.Toconstructtheoptimalriskyportfolio,wefirstdeterminetheoptimalactiveportfolio.UsingtheTreynor-Blacktechnique,weconstructtheactiveportfolio:
A
0.000476
–0.6142
B
–0.000873
1.1265
C
0.000944
–1.2181
D
–0.001322
1.7058
Total
–0.000775
1.0000
Beunconcernedwiththenegativeweightsofthepositiveαstocks—theentireactivepositionwillbenegative,returningeverythingtogoodorder.
Withtheseweights,theforecastfortheactiveportfoliois:
α=[–0.6142×
1.6]+[1.1265×
(–4.4)]–[1.2181×
3.4]+[1.7058×
(–4.0)]
=–16.90%
β=[–0.6142×
1.3]+[1.1265×
1.8]–[1.2181×
0.70]+[1.7058×
1]=2.08
Thehighbeta(higherthananyindividualbeta)resultsfromtheshortpositionsintherelativelylowbetastocksandthelongpositionsintherelativelyhighbetastocks.
σ2(e)=[(–0.6142)2×
3364]+[1.12652×
5041]+[(–1.2181)2×
3600]+[1.70582×
3025]
=21,809.6
σ(e)=147.68%
TheleveredpositioninB[withhighσ2(e)]overcomesthediversificationeffectandresultsinahighresidualstandarddeviation.Theoptimalriskyportfoliohasaproportionw*intheactiveportfolio,computedasfollows:
Thenegativepositionisjustifiedforthereasonstatedearlier.
Theadjustmentforbetais:
Sincew*isnegative,theresultisapositivepositioninstockswithpositivealphasandanegativepositioninstockswithnegativealphas.Thepositionintheindexportfoliois:
1–(–0.0486)=1.0486
c.TocalculatetheSharperatiofortheoptimalriskyportfolio,wecomputetheinformationratiofortheactiveportfolioandSharpe’smeasureforthemarketportfolio.Theinformationratiofortheactiveportfolioiscomputedasfollows:
A=
=–16.90/147.68=–0.1144
A2=0.0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 投资 10 习题 答案 08