新人教版数学八年级上册教案132 画轴对称图形Word文档格式.docx
- 文档编号:22009556
- 上传时间:2023-02-02
- 格式:DOCX
- 页数:13
- 大小:304.68KB
新人教版数学八年级上册教案132 画轴对称图形Word文档格式.docx
《新人教版数学八年级上册教案132 画轴对称图形Word文档格式.docx》由会员分享,可在线阅读,更多相关《新人教版数学八年级上册教案132 画轴对称图形Word文档格式.docx(13页珍藏版)》请在冰豆网上搜索。
这就是我们这节课要学习的.下面同学们来仔细观察一个图案.(小黑板展示)
以虚线为对称轴画出图的另一半:
[生甲]这个图案
(1)左右两边应该完全相同,画出的整个图案的形状应该是个脸.
[生乙]图案
(2)画出另一半后应该是一座小房子.
[师]大家能把这两个图案的另一半画出来吗?
[师]我们利用方格纸来试着画一画.
……
[师]画好了吧?
我们今天就来学习作出简单平面图形经过轴对称后的图形.
二、导入新课
[师]如何作一个图形经过轴对称后的图形呢?
我们知道:
任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:
对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L的对应点A′,可采取如下方法:
(1)过点A作对称轴L的垂线,垂足为B;
(2)在垂线上截取BA′,使BA′=AB.
点A′就是点A关于直线L的对应点.
好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.
[师]画好了没有?
[生]画好了.
[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢?
[例1]如图
(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.
[师]同学们讨论一下.
[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.
[师]说说看,找几个什么样的点就行呢?
[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了.
[师]好,下面大家一起动手做.
作法:
如图
(2).
(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线L的对称点;
(2)类似地,作出点B、C关于直线L的对称点B′、C′;
(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.
[师]大家做完后,我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.
归纳:
几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;
对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.
[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.下图中,要作出图形的另一半,哪些点可以作为特殊点?
并画出图形的另一半.
[师]大家作个简单讨论,共同来完成这个题.
[生]在图形
(1)上找三个点,在图形
(2)中找一个点就可以,如下图:
[师]现在我们来做练习.
Ⅲ.随堂练习
(一)课本P41练习1、2.
1.如图,把下列图形补成关于直线L对称的图形.
提示:
找特殊点.
答案:
图(略)
2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.
本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.
(二)阅读课本P67~P68,然后小结.
三、课时小结
本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.
四、课后作业
(一)课本P71习题13.2的1、5、8、9题.
(二)预习内容P68~P70.
五、活动与探究
[探究1]
如图
(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
你可以在L上找几个点试一试,能发现什么规律吗?
过程:
把管道L近似地看成一条直线如图
(2),设B′是B的对称点,将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.
结果:
作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.
[探究2]
为什么在点C的位置修建泵站,就能使所用的输管道最短?
将实际问题转化为数学问题,该问题就是证明AC+CB最小.
结果:
如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>
AB′,而AB′=AC+CB′=AC+CB,则有AC+CB<
AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短
备课资料
参考练习
1.已知△ABC,过点A作直线L.
求作:
△A′B′C′使它与△ABC关于L对称.
(1)作点C关于直线L的对称点C′;
(2)作点B关于直线L的对称点B′;
(3)点A在L上,故点A的对称点A′与A重合;
(4)连结A′B′、B′C′、C′A′.
则△A′B′C′就是所求作的三角形.
2.已知a⊥b,a、b相交于点O,点P为a、b外一点.
点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).
(1)过点P作PC⊥a,并延长PC到M,使CM=PC.
(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.
则点M、N就是点P关于a、b的对称点.
证明:
∵点P与点M关于直线a对称,
∴直线a是线段PM的中垂线.
∴OP=OM.
同理可证:
OP=ON.
∴OM=ON.
3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.
略.毛
六、教学反思:
这节课是北师版小学数学三年级下册空间与图形中的学习内容,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础.这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:
让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主.
反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点.学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦.
课题:
13.2.3用坐标表示轴对称
(一)〔知识与技能〕
1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.
2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形.
1.在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识.
2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.
在探索规律的过程中,提高学生的求知欲和强烈的好奇心.
1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.
2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.
教学难点:
用坐标表示轴对称.
教学方法:
探索发现法.
教具准备:
坐标纸.
学具准备:
教学过程
[活动1]
1.如图:
(1)观察上图中两个圆脸有什么关系?
(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).
你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?
2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.
(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?
(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?
设计意图:
通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.
师生行为:
[生]1.
(1)观察可发现图中的两个圆脸关于y轴对称.
(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).
同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1).
2.师生共同完成
[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),C(4,4),D(2,4).
(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4),D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的.
(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.
[师]A(2,2)与A1(-2,2)关于y轴对称,
B(4,2)与B1(-4,2)关于y轴对称,
C(4,4)与C1(-4,4)关于y轴对称,
D(2,4)与D1(-2,4)关于y轴对称.
那么关于y轴对称的点具有什么规律呢?
A(2,2)与A2(2,-2)关于x轴对称,
B(4,2)与B2(4,-2)关于x轴对称,
C(4,4)与C2(4,-4)关于x轴对称,
D(2,4)与D2(2,-4)关于x轴对称.
那么关于x轴对称的点有何规律呢?
这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.
[活动2]
C/.
在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.
已知点A(2,-3),B(-1,2),C(-6,-5),D(
,1),E(4,0).
关于x轴的对称点A′(____,____)B′(_____,______)C′(_____,_____)D′(____,_____)E′(_____,_____).
关于y轴的对称点A″(_____,____)B″(_____,______)C″(_____,_____)D″(____,_____)E″(_____,_____).
通过学生动手操作,分别作A,B,C,D,E关于x轴、y轴的对称点A′,B′,C′,D′,E′;
A″,B″,C″,D″,E″,并且求出它们的坐标,观察,归纳它们坐标之间的关系.
教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律.
[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(
,1),E(4,0)点.
我们先在坐标系中作出A点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,M点的坐标为(2,0).在AM的延长线上截A′M=AM,则A′就是A点关于x轴的对称点,所以A′在第一象限,因为A′M=AM,所以A′的纵坐标为3,因为AA′⊥x轴,即AA′∥y轴,所以A′的横坐标为2,即A′的坐标为(2,3).
同理可求得B,C,D,E关于x轴的对称点B′,C′,D′,E′的坐标分别为B′(-1,-2),C′(-6,5),D′(
,-1),E′(4,0).列表如下:
已知点
A(2,-3)
B(-1,2)
C(-6,-5)
关于x轴的对称点
A′(2,3)
B′(-1,-2)
C′(-6,5)
续表
D(
,1)
E(4,0)
D′(
,-1)
E′(4,0)
[师]观察上表每对对称点坐标之间的关系,你发现什么规律?
[生]每对对称点的横坐标相同,纵坐标互为相反数.
[师]我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗?
学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律.
[师生共析]
关于x轴对称的每对对称点的坐标:
横坐标相同,纵坐标互为相反数.
接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标.
[生]同样,我们先作出A关于y轴的对称点A″,并求出A″的坐标.
过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截A″N,使A″N=AN,则A″就是所求的A关于y轴的对称点.A″在第三象限,AA″⊥y轴,且AN=A″N,所以A″的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B″,C″,D″,E″的坐标分别为B″(1,2),C″(6,-5),D″(-
,1),E″(-4,0).列表如下:
关于y轴对称点
A″(-2,-3)
B″(1,2)
C″(6,-5)
D(
D″(
E″(-4,0)
[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?
[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.
例2(教材P70)
三、随堂练习(教科书P70练习)
四、课时小结
本节课的主要内容(由学生在教师的引导下共同回忆总结):
1.在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.
2.利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想.
五、课后作业
教科书习题13.2─2、3、4题,第6题、第7题(学有余力的同学做).
6、教学反思:
本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.本节课采用探究、发现式教学法,通过找具有一定代表性的分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间关系发现点的坐标之间关系,使学生体验数形结合思想.寻找规律后检验其正确性是科学研究问题的一个必不可少的步骤,“请你想办法检验你所发现的规律的正确性,说说你是如何检验的”,目的在于培养学生形成良好的科学研究方法,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.然后通过把对称轴是坐标轴变成了直线x=3和y=-4的变式探究,使学生再次体验数形结合的思想,并拓展到直线x=m和y=n,使学生学会通过寻找线段之间的关系来求点的坐标,形成方法.最后一个练习中的图案匠心独具设计成一只美丽的蝴蝶,能较好地激发学生的学习兴趣,符合八年级学生的心理特征,也是本节课所学内容的一个较好运用.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人教版数学八年级上册教案132 画轴对称图形 新人 数学 年级 上册 教案 132 画轴 对称 图形