新人教版八年级数学下册知识点总结归纳.docx
- 文档编号:2197280
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:22
- 大小:407.42KB
新人教版八年级数学下册知识点总结归纳.docx
《新人教版八年级数学下册知识点总结归纳.docx》由会员分享,可在线阅读,更多相关《新人教版八年级数学下册知识点总结归纳.docx(22页珍藏版)》请在冰豆网上搜索。
新人教版八年级数学下册知识点总结归纳
八年级数学(下册)知识点总结
二次根式
【知识回顾】
1.二次根式:
式子(≥0)叫做二次根式。
2.最简二次根式:
必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
(1)()2=(≥0);
(2)
5.二次根式的运算:
(1)因式的外移和内移:
如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:
先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:
二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
=·(a≥0,b≥0);(b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质
例1下列各式1),
其中是二次根式的是_________(填序号).
例2、求下列二次根式中字母的取值范围
(1);
(2)
例3、在根式1),最简二次根式是()
A.1)2)B.3)4)C.1)3)D.1)4)
例4、已知:
例5、(2009龙岩)已知数a,b,若=b-a,则( )
A.a>b B.a
2、二次根式的化简与计算
例1.将根号外的a移到根号内,得( )
A.; B.-; C.-; D.
例2.把(a-b)化成最简二次根式
例3、计算:
例4、先化简,再求值:
,其中a=,b=.
例5、如图,实数、在数轴上的位置,化简:
4、比较数值
(1)、根式变形法
当时,如果,则;如果,则。
例1、比较与的大小。
(2)、平方法
当时,如果,则;如果,则。
例2、比较与的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。
例3、比较与的大小。
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。
例4、比较与的大小。
(5)、倒数法
例5、比较与的大小。
(6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较与的大小。
(7)、作差比较法
在对两数比较大小时,经常运用如下性质:
;
例7、比较与的大小。
(8)、求商比较法
它运用如下性质:
当a>0,b>0时,则:
;
例8、比较与的大小。
5、规律性问题
例1.观察下列各式及其验证过程:
,验证:
;
验证:
.
(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
勾股定理
1.勾股定理:
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:
如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:
勾股定理与勾股定理逆定理)
4.直角三角形的性质
(1)、直角三角形的两个锐角互余。
可表示如下:
∠C=90°∠A+∠B=90°
(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下:
BC=AB
∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下:
CD=AB=BD=AD
D为AB的中点
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
CD⊥AB
6、常用关系式
由三角形面积公式可得:
ABCD=ACBC
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:
如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
8、命题、定理、证明
1、命题的概念
判断一件事情的语句,叫做命题。
理解:
命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:
如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:
如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:
可以证明两条直线平行。
数量关系:
可以证明线段的倍分关系。
常用结论:
任一个三角形都有三条中位线,由此有:
结论1:
三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:
三条中位线将原三角形分割成四个全等的三角形。
结论3:
三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:
三角形一条中线和与它相交的中位线互相平分。
结论5:
三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
10数学口诀.
平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
四边形
1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
3.平行四边形的性质:
因为ABCD是平行四边形⇒
4.平行四边形的判定:
.
5.矩形的性质:
因为ABCD是矩形⇒
6.矩形的判定:
⇒四边形ABCD是矩形.
7.菱形的性质:
因为ABCD是菱形
⇒
8.菱形的判定:
⇒四边形四边形ABCD是菱形.
9.正方形的性质:
因为ABCD是正方形
⇒
(1)
(2)(3)
10.正方形的判定:
⇒四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
11.等腰梯形的性质:
因为ABCD是等腰梯形⇒
12.等腰梯形的判定:
⇒四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
∴ABCD四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.
15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.
一基本概念:
四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二定理:
中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三公式:
1.S菱形=ab=ch.(a、b为菱形的对角线,c为菱形的边长,h为c边上的高)
2.S平行四边形=ah.a为平行四边形的边,h为a上的高)
3.S梯形=(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四常识:
※1.若n是多边形的边数,则对角线条数公式是:
.
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:
平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:
角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:
平行四边形……;是双对称图形的有:
线段、矩形、菱形、正方形、正偶边形、圆…….注意:
线段有两条对称轴.
一次函数
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:
函数的定义:
一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:
一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。
)
注意:
列表时自变量由小到大,相差一样,有时需对称。
2、描点:
(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:
(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法
(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:
正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:
当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 下册 知识点 总结 归纳