离心模型试验报告Word格式文档下载.docx
- 文档编号:21934681
- 上传时间:2023-02-01
- 格式:DOCX
- 页数:17
- 大小:1.10MB
离心模型试验报告Word格式文档下载.docx
《离心模型试验报告Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《离心模型试验报告Word格式文档下载.docx(17页珍藏版)》请在冰豆网上搜索。
Law(1992)报道了他所进行的1/5模型试验,该模型试验采用在模型顶部施加竖向荷载直至破坏,其结果与原型结果进行了比较。
Yoo和Ko(1991)进行了一系列的筋村为金属带的模型试验,目的是研究竖向荷载对加筋挡墙的影响。
Matichard(1992)研究土工织物加筋桥台承受上部荷载直至破坏的情况,他们的离心模型试验结果与原型试验观测结果有相当好的吻合,模型破坏发生时,上部的筋材被拨出或拉断。
Springman和Balachandran(1994)研究了有纺布加筋结构受条形荷载作用的稳定,最大拉力与估计的结果吻合较好。
此外,表2-1列出的研究包括使用离心模型研究土钉结构、软基路堤、锚定结构等等。
表2-1 加筋边坡离心模型
结构
(1)
加筋材料
(2)
模型高度(3)
试验地点(4)
分析方法
(5)
试验者
(6)
加筋墙
金属带和棒
200
Manchster,U.K
简单锚固分析法
Bolton,1978
土钉墙
土钉
150
U.C,Davis
土钉极限分析法
Shen,1982
Bolton,1982
无纺布
600
LCPC,France
没有破坏
Blivet,1986
铝泊,塑料带,无纺布,塑料带
Tie-back分析
Mitchell,1988,Jaber,1989
加筋墙和边坡
100
Txukuba,Japan
简单稳定分析(Fellenius)
Taniguchi,1988
软基路堤
48
Yokosuka,Japan
Terashi,1988
铝带
144,80
U.ofMaryland
无量纲安全系数
Goodings,1989
钢带,钢网,土工格栅,无纺布
500
模型没有达至破坏
Jaber,1990
加筋拉断整体安全
Jaber,1990,199
114,191
破坏情况没有分析
Wiremat
块体滑移屈服加速度(地震荷载)
Craig,1990
锚定墙
钢锚杆
280
锚杆的拉拨能力
Kutter,1990
土工织物
China
半经验承载能力
Liu,1991
Boulder
Tie-Back分析
Yoo,1991
钢带
300
RPI
Ragheb,1991
有纺布
240
Shi,1992
190
Guler,1992
土工格栅
Japan
平面分析
Abe,1992
550
Matichard,1992
590
Law,1992
152
地震研究
Tufenkjian,1992
Bishop分析法
Porbaba,1994,1996
Israel
土钉拉出分析
Frydman,1994
Cambridge,U.K
Springman,1994
软弱粘性土路堤
土工织物,土工格栅
Bolton,1994
3、
加筋边坡离心模型相似原理
3.1离心模型的普遍相似原理
相似理论是联系原型与模型的桥梁[],为保证模型与原型严格相似,从普遍意义是讲,必须满足相似三定理。
第一定理(正定理):
对于相似的现象,其相似指标为1,或其相似准则的数值相同。
第二定理(π定理):
设一物理系统有n个物理量,其中k个物理量的量纲是独立的,则它可表达为n-k个相似准则的函数。
第三定理(逆定理):
对于同一类现象,如单值量相似,且由单值量组成的相似准则在数量上相等,则现象相似。
离心模型是将原型缩小N倍,通过离心加速度将重力加速度提高N倍,从而将材料的密度提高N,以保证模型结构在离心场的应力水平与原型在重力作用的应力相等,即离心模型是等应力模型。
根据相似三定理,推导出常见物理量在离心模型相似比例见表3-1,表中F代表力的量纲,L代表几何尺寸量纲,T代表时间。
表3-1中第4列给出了常规线弹性小比例模型的相似比例,从而可证实离心模型试验的优点。
表3-1 常见物理量离心模型相似比
物理量
量纲
离心模型(原型/模型)
(3)
线弹性模型(原型/模型)
(4)
长度
L
N
面积
L2
N2
体积
L3
N3
质量
FT2L
速度
LT-1
1
加速度
LT-2
1/N
应力
FL-2
应变
-
位移
力
F
力矩
FL
能量
频率
T-1
时间:
运动
T
固结
粘滞量
粘滞系数η
FL-3T
阻尼系数
FL-1T
流量
L3T-1
刚度
FL2
N4
3.2加筋结构的离心模型的相似性
一般土结构(如路堤、边坡)的离心模型中,由于使用了与原型相同的试验材料,因此,离心模型的相似率与表3-1相同。
也讲是讲,离心模型试验结果的应力应变即是原型结果,位移的N倍即为原型结果。
除与一般土结构如路堤不同,加筋结构同除散粒材料外,对结构起重要作用的还有一项是加筋材料,因此,在离心模型中如何模拟加筋材料是加筋结构离心模型研究的重要问题。
边坡稳定分析有多种方法,对于加筋边坡而言,通常选用圆弧条分法(瑞典法)。
其表达式为:
图3-1加筋边坡稳定分析
(3-1)
式中:
Ai――第i条的面积(m2);
g――重力加速度(m/s-2);
θi――第i条的偏角;
li――第i条块的圆弧长度(m);
R――圆弧半径(m);
ρ――土的密度(kg/m3);
φ――填土的内摩擦角。
c――填土的粘聚力(kPa);
Tj――第j根筋条的拉力(kN);
Hj――第j根筋条距圆心O的距离(m)。
为保证筋条在受拉不致于被拨出,筋材必须有一定的锚固长度,锚固长度指从圆弧面筋材延伸至稳定土体内的长度。
锚固长度根据拉力按下式计算:
(3-2)
Lp,j――锚固长度(m)
σv,j――第j条筋材的上覆压力(kPa);
Fs――筋材抗拨出安全系数;
Φsg――土与筋材间的摩擦角。
筋材的总长度Lj为:
(3-3)
La,j――主动段长度(m),即圆弧以内的长度。
在离心模型试验中,根据原型稳定分析,模型的的边坡稳定可以写成如下形式:
(3-4)
式中下标m代表为模型。
对于模型与原型而言,存在如下关系:
(3-5)
式中 αL――线性尺度相似比。
αg――加速度相似比。
在离心模型中,
。
将上式代入式(4)有
(3-6)
圆弧法情况,根据相似性原理要求,模型与原型的安全系数系数相等即:
(3-7)
比较式
(1)和式(6),有:
(3-8)
可见,对于填土选择原型和模型使用同一种土即可。
对于筋材要求模型筋材的拉伸强度是原型的1/N。
4、
土工格室加筋边坡的离心模型试验方案
4.1离心机简介
本次试验采用西南交通大学2002年完工的土工专用离心机,离心机的基本参数如表4-1。
表4-1离心机的基本参数
型号
半径
负荷
集流环
模型箱尺寸
功率
TLJ-2
2.7m
100g.t
64
800mm*600mm*600mm
185KW
4.2试验分组
本次试验主要进行土工格室加筋边坡的离心模型试验,试验目的是研究土工格室加筋边坡的破坏面。
试验分5组,各组的详细情况如下:
表4-2离心模型试验土性指标
组别
密度
含水量
压实度
C(kPa)
φ(°
)
第一组
20.58
23.00%
0.94
20.225
15.21
第二组
20.19
24.40%
0.91
10.31
12.44
第三组
20.07
21.13%
0.93
55.17
14.41
第四组
21.40%
48.31
13.44
第五组
20.00
21.31%
48.17
表4-3离心模型试验格室指标
格室长度(cm)
高度(cm)
坡比
格室高度与层高之比
层厚
层数
26.5
1:
0.75
5
2.5
10
15
18
模型的尺寸如图4-1。
图4-1离心模型的尺寸示意图
图4-2离心模型实景图
4.3模型材料
土工格室以聚乙烯膜通过热粘合而成。
模型土工格室的高度为5mm,宽度为170×
170mm。
聚乙烯膜的应力应变关系如4-3如示。
应变为5%的强度为500kPa,切线拉伸模量为40MPa。
土工格室原型材料抗拉强度为21Mpa,原型与模型的强度之比为40。
模型土工格室的格室尺寸和格室高度按原型的1/20缩小。
原型土工格室厚度为1mm,若按模型1/40缩小则为0.25mm,这样的厚度在制作模型时极为不便,因此,本次试验的模型土工格室的厚度为0.5mm,是原型的1/20,但层数减少一半,相当于将原型的二层合为一层,这样的做法只会影响模型横向拉力,对模型破坏面的无影响。
模型填土为工点填料,填料按预定的含水量和密实度进行配制。
表1中的含水量和密实度是试验后测定值。
5.4试验方案
图4-3聚乙烯膜应力应变关系
本次试验各组依据试验目的,将离心加速度从低往高逐级提高,并根据各组不同试验条件确定加速度级数,每级加速度分别稳定加载15min。
5、
试验结果数据分析
由于模型与原型的强度的为1:
40,格室尺寸随离心加速度而变化,因此,在进行试验结果分析时,主要包括两方面的内容,一方面是不同离心加速度边坡的变形,二是边坡滑动时模型边坡的安全系数。
为了方便照相和分析比较,模型上布置了网格,以网格坐标的变化来描述模型的变形。
网格的基本方式如图4-3,在照片中,由于模型箱箱边和照相时闪光灯的反光的原因,实际照片中的网格中不见最下面的二行,且左右两边各一列均在闪光灯引起的模型箱边框的阴影中。
因此,以照片网格为分析目标。
5.1第一组试验结果分析
在离心加速度场中,边坡随加速度的提高而产生变形,最初的变形主要为垂向沉降,这是由于土体在离心加速度场中的固结作用而产生的。
当离心加速度达到一定程度后,边坡开始产生水平变形,这是边坡失稳的前奏。
边坡变形最开始产生变形的点是坡角,随后逐渐向上发展。
在不同的离心加速度情况下,变形情况存在较大的差别。
在25g时,边坡内产生了小量的垂向沉降,基本没有水平变形。
随着加速度的提高,边坡的水平变形逐渐增大(参见图~图)。
45g的位移场第4、5、6行靠近边坡的网格点的变形基本上只有水平变形,并由边坡向坡内逐渐减少。
最大的水平变形反算到原型为64.46cm,发生在第5行最靠近边坡的网点上。
在未加筋条件下,粘性土边坡的稳定性主要取决于粘性土强度、坡高和坡比。
以模型测试得到的强度为计算依据,得出不同高度下原型的安全系数和临界圆心位置。
计算时取坡角的坐标为坐标原点。
由计算结果可知,当离心加速度大于40g时,边坡应当产生滑动。
由45g时的照片可明显地判别出由于引起的网格错动,错动位置即为滑动面。
45g时网格错动的最高位置为至上而下的第三行的位置,这说明滑动面还滑有完全连通。
但计算结果与试验结果的滑动面位置较为接近(图)。
比较计算结果和试验滑动面可知,计算的滑动面较深,圆弧的弧度较大,半径较小。
分析其原因是,在模型试验中,变形随离心加速度是逐渐发展的。
图5-1加速度为25g的边坡
图5-2加速度为45g的边坡
图5-3加速度为50g的边坡
图5-4第一组45g的滑动面
图5-5第一组45g的位移矢量图
图5-6第一组45g的位移矢量图
图5-7第一组45g的位移矢量图
图5-8第一组45g的位移矢量图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离心 模型 试验报告