初二数学知识点总结Word文档格式.docx
- 文档编号:21594169
- 上传时间:2023-01-31
- 格式:DOCX
- 页数:24
- 大小:42.47KB
初二数学知识点总结Word文档格式.docx
《初二数学知识点总结Word文档格式.docx》由会员分享,可在线阅读,更多相关《初二数学知识点总结Word文档格式.docx(24页珍藏版)》请在冰豆网上搜索。
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°
的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°
那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×
180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
学好初二数学的方法
一、该记的记,该背的背,不要以为理解了就行
数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。
比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。
在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。
打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;
有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。
同样,记不住数学的定义、法则、公式、定理就很难解数学题。
而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。
最常见的等量关系就是“方程”。
比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:
速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。
我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。
如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。
初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;
到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。
解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。
物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。
因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。
任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。
初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。
但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。
在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。
往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。
在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。
尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;
随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。
比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。
这就是运用“对应”的思想和方法来解题。
初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。
“对应”的思想在今后的学习中将会发挥越来越大的作用。
三、自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。
因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
我去佛山一中开家长会时,一中校长的一番话使我感触良多。
他说:
我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。
当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。
一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。
随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。
因此,要养成预习的习惯。
在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。
由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。
同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。
学来学去,知识还是别人的。
检验数学学得好不好的标准就是会不会解题。
听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。
当然,俗话说,艺高胆大,艺不高就胆不大。
但是,做不出是一回事,没有去做则是另一回事。
稍为难一点的数学题都不是一眼就能看出它的解法和结果的。
要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
你都没有动手去做,又怎么知道自己不会做呢?
即使是老师,拿到一道难题,也不能立即答复你。
也同样要先分析、研究,找到正确的思路后才向你讲授。
不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。
在数学解题中,自信心是相当重要的。
要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。
要敢于去做题,要善于去做题。
这就叫做“在战略上藐视敌人,在战术上重视敌人”。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。
一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。
数学的题目几乎没
有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。
有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
当然,做题先从哪儿下手是一件棘手的事,不一定找得准。
但是,做题一定要抓住其特殊性则绝对没错。
选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。
一般难题都有多种解法,条条大路通北京。
要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
数学题目是无限的,但数学的思想和方法却是有限的。
我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。
题目并不是做得越多越好,题海无边,总也做不完。
关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
当然,题目做得多也有若干好处:
一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;
一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。
没有自信就会畏难,就会放弃;
只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
20XX年初二上学期数学竞赛辅导试卷
一次函数
一、选择题(每小题5分,共30分)
1.(04镇江中考)已知abc≠0,并且则直线一定经过()
A.第一、三象限B、第二、三象限C.第三、四象限D、第一、四象限
2.(12届江苏)无论k为何值,一次函数(2k-1)x-(k-3)y-(k-11)=0的图像必经过定点()
A.(0,0)B.(0,11)C.(2,3)D.无法确定
3.(05黑龙江竞赛题)已知正比例函数y=(2m-1)x的图像上有两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()
A.m<2B.m>2C.m<D.m>
4.(广西)如右图是函数y=x的图像,设点P关于x轴的对称点P’在y=x上,如果P点的横坐标为,那么P’的纵坐标为()
A..-.-1D.-
5.(18届江苏)在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点,设k为整数,当直线y=x-2与y=kx+k的交点为整点时,k的值可取()
A.4个B.5个C.6个D.7个
6.(04黄冈中考)某班同学在探究弹簧的长度与外力的变化关系时,实验得到相应数据如下表:
砝码的质量x(克)050100150200250300400500
指针位置y(厘米)234567
则y与x的函数图像是()
篇二:
初中数学知识点全总结(完美打印版)
七年级数学(上)知识点
人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.
第一章有理数
一、知识框架
二.知识概念
1.有理数:
q
(1)凡能写成(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;
正分数、负分数统p
称分数;
整数和分数统称有理数.注意:
0即不是正数,也不是负数;
-a不一定是负数,+a也不一定是正数;
不是有理数;
正整数正整数正有理数整数零正分数
(2)有理数的分类:
①有理数零②有理数负整数
负整数正分数分数负有理数负分数负分数
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;
0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:
绝对值的意义是数轴上表示某数的点离开原点的距离;
a(a0)(a0)a
(2)绝对值可表示为:
a0(a0)或a;
绝对值的问题经常分类讨论;
a(a0)a(a0)
5.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
6.互为倒数:
乘积为1的两个数互为倒数;
0没有倒数;
若a≠0,那么a的倒数是1;
若ab=1a、a
b互为倒数;
若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:
a+b=b+a;
(2)加法的结合律:
(a+b)+c=a+(b+c).
9.有理数减法法则:
减去一个数,等于加上这个数的相反数;
即a-b=a+(-b).
10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;
各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:
(1)乘法的交换律:
ab=ba;
(2)乘法的结合律:
(ab)c=a(bc);
(3)乘法的分配律:
a(b+c)=ab+ac.
12.有理数除法法则:
除以一个数等于乘以这个数的倒数;
零不能做除数,即无意义.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;
负数的偶次幂是正数;
当n为正奇数时:
(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:
(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:
把一个大于10的数记成a310n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:
一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:
从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:
先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
a0
第二章整式的加减
一.知识框架
二.知识概念
1.单项式:
在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:
单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:
几个单项式的和叫多项式.
4.多项式的项数与次数:
多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;
理解合并同类项、去括号的依据是分配律;
理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章一元一次方程
一.知识框架
1.一元一次方程:
只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式:
ax+b=0(x是未知数,a、b是已知数,且a≠0).
3.一元一次方程解法的一般步骤:
整理方程去分母去括号移项合并同类项系数化为1(检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:
多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:
“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:
多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
距离距离
(1)行程问题:
距离=速度2时间速度时间;
时间速度
(2)工程问题:
工作量=工效2工时工效
(3)比率问题:
部分=全体2比率比率工作量工作量工时;
工时工效部分部分全体;
全体比率
(4)顺逆流问题:
顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
售价成本1100%;
(5)商品价格问题:
售价=定价2折2,利润=售价-成本,利润率成本10
(6)周长、面积、体积问题:
C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a。
1S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.3
本章内容是代数学的核心,也是所有代数方程的基础。
丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
第四章图形的认识初步
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.
二、本章书涉及的数学思想:
1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;
在画图形时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
篇三:
人教版初中数学知识点总结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 知识点 总结