基于单片机的音乐喷泉Word格式文档下载.docx
- 文档编号:21567550
- 上传时间:2023-01-31
- 格式:DOCX
- 页数:33
- 大小:432.94KB
基于单片机的音乐喷泉Word格式文档下载.docx
《基于单片机的音乐喷泉Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《基于单片机的音乐喷泉Word格式文档下载.docx(33页珍藏版)》请在冰豆网上搜索。
针对不同水形要求有不同的控制方法,从喷泉的控制来看基本可分为四类:
第一类水形,启动水泵直接向管道和喷头加压,效果是喷头的水柱在启动和停止时有一过渡的升降过程;
第二类水形,需要通过变频器控制水泵转速来实现一种水柱连续升降的效果;
第三类水形,在加压喷水时启动传动电机控制喷头摇摆,达到一种花型变换;
第四类水形,需要在直接启动水泵向管道加压后,通过控制器快速地控制大量的电磁阀门的开闭,使喷嘴以各种方式进行点射,形成所谓的跑泉和跳泉效果。
通过上述分析,本课题将同时采用第二类水形和第四类水形,即控制系统须控制变频器的动作,实现对水泵转速控制,让喷泉在运行时,可以看到水柱的连续升降和花型的大小变化效果;
为了在喷泉运行过程中,随音乐的节奏变化,可以在不同的瞬时获得不同的花形,系统将设有一定数量的电磁阀,系统将根据音乐节奏的快慢或信号的强弱,控制相应的电磁阀开闭状态,就可以得到不同的花形。
由于涉及到变频器、水泵、电磁阀、喷头的选择,故需进行喷泉造型系统的管网进行设计计算(流量计算、损失计算等),这将作为变频器、水泵、电磁阀、喷头选择的依据;
同时要进行控制系统设计(硬件设计和软件设计),是为了实现单片机的放音、花形变化、灯光变化,以及音乐信号和花形的同步性处理。
2音乐喷泉造型系统设计
2.1造型方案设计及选择
方案:
设置了十六个喷头,分内外两圈布置,在水池的中心还设置了一个花柱喷头,喷泉造型如图2.1所示。
本方案采用十字形供水方式,将水泵设置在喷池中央,同样是为了让水流迅速流至每个喷头,当然也可以采用在外圈或内圈安装水泵,用一短直管将内外两圈的水管连接起来,就可以向各个喷头供水了,但是这种方式使距离水泵较远的喷头的水柱高度变化会滞后于距离水泵较近的同性质的喷水高度变化,产生的滞后效应较十字形供水方式的滞后效应大。
同时,本方案具有花形控制灵活,花形变化类型多,而且观赏效果好,可以从各个方向上都能够看到同样的花形,作为旅游景点内观赏用的音乐喷泉是较佳的选择。
选择此方案作为本次设计的花形造型方案。
由于喷泉设置在旅游景点内,为了取得较好的视距效果。
因此,喷泉所占据的空间位置,需根据人眼视域的生理特征以及周围的景物来确定,经查相关资料,由以下两个指标确定,即垂直视域和水平视域。
当垂直视角在30度、水平视角在45度的X围内,有良好的视域[1]。
当垂直视角为30度时,其合适视距为[1]:
式(2.1)
式中D1—合适视距
H—景物高
h—人眼高
根据旅游景点内的特征,取水平合适视距为2.5m左右较为合适,因此由式(2.3)可得喷水池的宽度为
式(2.4)
由于小型喷泉的垂直合适视距约为喷水高的3倍,喷泉景物合适的视距约为景物宽度的1.2倍,因此喷泉的喷水高度按最大为2m高的水柱进行设计,宽度也按2m进行设计。
1—花柱喷头2、3、4、5、6—树冰喷头
7、9、11、13、15—万向直流喷头8、10、12、14、16—扁嘴喷头
图2.1喷泉造型平面图
2.2喷泉的管网设计
2.2.1喷泉的水力计算
①水平射程和喷水高度
影响喷头水平射程的因素很多,但主要因数是工作压力,喷嘴直径和喷射角度,射流曲线轨迹的几个主要参数见图2.2。
图2.2倾斜射流曲线轨迹
图中:
L1—射流上升部分的水平投影(m)
L2—射流下降部分的水平投影(m)
R—水平射程(m)
h—射流高度(m)
α—倾斜射流的仰角(度)
表2.1喷泉中各喷头的型号及参数表
喷头型号
WX-117
HZ-112
BZ-305
SB-219
水压(KPa)
43-67
70
50
55
流量(m3/h)
0.6—0.8
5—7
4
2.5
喷高(m)
1.6—3.5
1.2—2.0
0.8—1.5
1.2
喷洒直径DN(mm)
0.2
1.5—1.8
1.3
连接管直径DN(mm)
15
25
20
连接形式
内螺纹
安装尺寸A(mm)
100
150
140
安装尺寸B(mm)
40
60
10
数量(个)
5
1
图片
②流量计算
喷头的流量可按下列公式计算:
[1]式(2.27)
式中
—喷头的流量
喷头的流量系数
—喷嘴的过水面积
g—重力加速度
由此可计算出主管道总流量为:
式(2.35)
2.2.2配水管网的计算
配水管网的计算主要是确定管径和水头损失。
①管径的计算
由水力学公式得知
将其代入上式,移项得[1]:
式(2.36)
式中D—管径
—流量
A—水管的过水断面积(通流面积)
π—圆周率
V—流速
查标准管道直径系列无48mm的管径,因此需对其修正,查标准管径系列取D=50mm.
②水头损失计算
喷泉中使用的管道都是压力管道,水流经管道时能量损失叫水头损失。
因此,总水头损失等于沿程水头损失与局部水头损失之和[1]。
即
式(2.38)
式中 h—总水头损失
∑h沿—沿程水头损失之和
∑h局—局部水头损失之和
2.3喷泉的管道布置、管材及附件选择
2.3.1喷泉的管道布置
喷泉的管道主要由输水管、配水管、补给水管、溢水管和泄水管等组成。
现将其布置要点简述如下:
①大型喷泉中,管道多且复杂时,应将主管道敷设在渠道中,在喷泉底座下设检查井,为了使喷水获得等高的射流,对于环行配水管网,多采用十字形供水。
②由于蒸发等原因,造成喷水池内水量的损失,另外水泵运行前需要充水,因此喷水池需设补充供水管。
③为了池水上涨造成溢流应设溢水管,为了便于清洗在水池底部应设泄水管。
④连接喷头的水管不能有急剧的变化,直管的长度不小于喷头直径的20~50倍,以保持射流的稳定。
⑤喷泉所有管道的接头应严格密封,安装完毕后,均应进行水压试验。
2.3.2管材的选用
按表2.2选择喷泉主管道为公称通径为50mm,外径为60mm的钢管,管螺纹连接方式(圆柱形管螺纹),其螺纹长度为24mm,基面处大径为49.616mm。
2.3.3管道附件选择
在喷泉的管道中,除开直管、喷头外,还有管道的连接件,控制件、过滤器等附件。
①连接管件
钢管的连接方式有螺纹连接,焊接和法兰连接三种。
由于在管径计算时所得管径为50mm,同时为使安装方便,故选螺纹连接[1]。
表2.2喷泉管道材料选择表
管材类别和名称
产品特征
优点
缺点
金属管
水煤气钢管
镀锌钢管︵白铁管︶
管径︵mm︶
单根长度(m)
容许工作压力(kg/
)
1、坚韧:
耐力大,抗震佳,弯切易
2、薄轻:
壁薄,质轻,耗料少
3、不糙:
内壁较光滑,水力条件好
4、易装:
连接方便(白铁管的镀锌层能保护管和税的色味不锈损)
1、易生锈:
埋在土中易腐蚀,其寿命为20~30年。
2、价昂
3、白钢管比黑铁管重3~6%,因为有镀锌层,不宜焊接。
6~155
4~9
≤10普通管
≤16加厚管
②控制管件
在喷泉管路中常用的阀门主要由闸阀,截止阀,逆止阀,电磁阀。
其驱动方式一般为手动。
连接型式有内螺纹和法兰两种,公称压力一般在10kg/
以下。
止回阀又叫单向阀,它是用来限制水流朝一个方向流动,用于水泵出水管和水源进水管等处,以防止水的倒流。
浮球阀是依靠水位变化而自动控制水流的开关。
来保持水位以便自动供水。
SLDF系列电磁阀是是使水柱的变化随音乐的节奏而变化得到不同的花型,达到花型效果。
各种控制管件的选择列于表2.3。
球阀:
安装在电磁阀和管道之间,使用它的目的是为了,再安装调试时,便于调节喷头内的水流量,以便到达用户想要的喷水高度和喷水花形大小。
手动截止阀:
安装在排水管处,相当于闸阀使用,条件不足时,可以用球阀代替,以便水池的清洗和换水。
直通式管接头:
用于球阀、电磁阀和喷头之间的连接。
表2.3喷泉系统各控制器件选择表
球阀
电磁阀
止回阀
手动截止阀
直通管接头
型号
JL-Q11F-25C(6个)
JL-Q11F-20C(5个)
JL-Q11F-15C(5个)
SLDF系列<
下水>
专用电磁阀
H12W
JL-J/L11W
JL-JT-11D
流量孔径
Φ10mm-Φ50mm
Φ15mm-Φ150mm
Φ50mm
数量
16个
Φ15mm(5个)
Φ25mm(6个)
Φ20mm(5个)
2个
1个
32个
工作压力
10MPa
φ50以下
0~0.6MPa
φ65以上
0.06~0.5MPa
6-16Mpa
PN≤1.6Mpa
图片
③喷泉照明灯具的选择
彩色低压水下灯:
水下照明灯一般配置在水面下5~10厘米处。
经查文献[7]选择水下灯具如表2.4。
表2.4水下灯具选择表
直径
功率
电压
颜色
照射高度
SXLEDI-24
100mm
5W
24V
8只
红/黄/绿/蓝
1.5~3m
说明:
灯具SXLEDI-24具有如下特点:
1)高节能;
2)寿命长;
3)多变幻;
4)利环保;
5)高新尖。
2.4水泵及电机的选择
潜水泵泵体可以完全浸于水中工作,其电动机和水泵的运动部件都是利用水来润滑,所以不会产生过高的水温,效率较高,既减少了机械损失又减少了水头损失。
查/T8092-1996标准[8]选择潜水泵的型号列于表2.5。
表2.5潜水泵的主要技术参数表
额定流量(m3/h)
额定扬程(m)
额定功率(kw)
额定转速(R/min)
额定电流(A)
额定电压(V)
配管内径(mm)
QSP12.5-40-3
12.5
3
2860
7.54
380
2.5喷水池的设计
2.5.1喷水池的组成
喷水池由池底、池壁、喷水供水管、吸水管、溢水管、泄水管、补充剂水管等组成。
如图2.3所示:
图2.3喷水池的组成示意图
2.5.2喷水池的尺寸确定
由于喷泉的喷水X围为直径2m,为使水滴不落到池外,在该X围的基础上,将其周围留250mm的余量空间,于是得喷水池的尺寸为的圆形水池2.5m,池壁高出地面0.4m,水深0.35m。
由此可以计算出水池的最大蓄水量为:
式(2.44)
3控制系统的设计
3.1控制系统的方案设计
图3.1控制原理图
控制系统是由单片机、延迟放大电路、光电隔离电路及电磁阀和变频器组成,其控制结构形式如图3.1所示。
该控制方案是通过对音乐信号的处理,将其转换成汇编程序存入单片机,使单片机唱歌,而且再改程序之中还加入其他控制语句。
由控制原理图可以看出。
单片机还需喷泉中的电磁阀和变频器的动作及灯光的变化,其中电磁阀对喷头控制思想是:
预先是根据设计的花形种类和变化方式,通过对电磁阀的开闭进行组合,编制不同的控制字制成表存入单片机,当单片机执行程序时,通过查表的方式去取不同的花形,以达到预想的花形变化,这样花形的变化就随音乐的节奏而变化。
同样,单片机对变频器的控制也与之类似,只不过控制字的编制是根据音乐的频率进行编制的,而且查表的方式也有所不同,这将在后面的内容中进行阐述;
因而变频器根据所接受的信号,输出不同的频率值,以控制水泵的转速,进而达到控制喷泉管路中的流量,就可以控制水柱的高度和花形大小了。
灯光和音响是由同一个I/O口经延迟放大电路后,使它们达到同步动作,而灯光之前须接一个固态继电器,以驱动灯具,并使之与单片机隔离。
3.2单片机型号选择
3.2.1确定单片机型号
经查INTER公司主要单片机微处理器系列MCS-48、MCS-51、RUPI-44、MCS-96等,考虑到本设计的特点,需要将程序预先写入程序存储器,只有选择具有可擦除功能的程序存储器[11]。
因此,本次设计选择MCS-51系列的8751芯片作为控制核心。
3.3控制系统的硬件设计
3.3.1系统组成
该硬件电路的核心是8751单片机,其片内具有4KB的EPROM,无须外扩程序存储器;
该系统中控制的对象,没有大量的运算和暂存数据,片内的128B的RAM已足以满足容量要求,故不必进行片外的RAM扩展。
为了控制操作方便,在P1口增加了第一曲、第二曲、循环等选择功能。
考虑到本系统的控制特点:
主要的数据处理时进行放音处理,如何将存入单片机中的音乐播放出来,这是一个关键,需要硬件和软件的协同工作。
因为P1口可以进行位寻址,用P1.7口作为音乐和灯光输出口,当定时器T0的计数值到后,就对P1.7口取反,即产生相应频率的方波。
由于系统中的电磁阀数量较多,且每个电磁阀都需要一个控制信号,同时还有变频器的控制,所以单片机的输出口点数不够,故需进行输出口的扩展,以便电磁阀和变频器的控制,也方便今后其它控制动作改造。
此处选择8155芯片作为扩展控制芯片,因为8155芯片内具有256个字节的RAM,两个8位、一个6位的可编程I/O口和一个14位的计数器,与MCS-51接口简单,并将PA、PB、PC口作为输出接口[12]。
为了使音响和花形变化同步,系统采用了硬件延时电路,其电路设计将在后面进行;
为了实现强电与弱电之间隔离,采用了光电隔离电路。
系统中还选用了SSR(Solidstatereleys)作为水下灯的驱动和单片机之间的隔离,它是一种无触点通断的电子开关,为四端有源器件。
其中两个端子为输入控制端,另外两端为输出受控端,中间采用光电隔离,作为输入输出之间电气隔离(浮空)。
在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。
整个器件无可动部件及触点,可实现常用的机械式电磁继电器一样的功能。
由于固态继电器是由固体元件组成的无触点开关元件,所以与电磁继电器相比具有工作可靠、寿命长、对外界干扰小、能与逻辑电路兼容、抗干扰能力强、开关速度快和使用方便等一系列优点。
因而具有很宽的应用领域,有逐步取代传统电磁继电器之势,并且可以进一步扩展到传统电磁继电器无法应用的计算机等领域[13]。
根据以上叙述,现将方案一转换成硬件电路接口图,即成为本设计的音乐喷泉控制系统原理图,应用电子CAD绘出其图形见附录A所示。
3.3.28155的初始化
将8155的地址/数据复用线AD0~AD7与8751单片机的P0口相连,作为数据的内外传递,使片选信号CE接地,让芯片始终被选中。
I/0口、存储器RAM选择信号(IO/M)与P2.0相连作为地址选通信号,低电平有效,即选择I/O口作为输出口。
RESET与P2.1口相连,即采用软件复位,以减少复位电路,节约设计成本,其他引脚连接如硬件原理图附录A所示。
于是根据下面两个表可以写出8155的RAM和各端口地址及命令字。
即:
RAM地址:
000H~00FFH命令口:
0100H
PA口:
0101HPB口:
0102H
PC口:
0103H命令字:
0FH
8155的初始化程序如下:
CLRP2.1;
8155复位
SETBP2.1
CLRP2.1
SETBP2.0;
8155IO/M=1选择使用在输出输入口
MOVDPTR,#100H;
命令/状态寄存器地址100H(指向命令口)
MOVA,#0FH;
设定命令/状态寄存器PA,PB,PC为输出
MOVXDPTR,A;
写入命令字
表3.18155端口地址表
IO口
命令口
PA
PB
PC
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0
P0.7
P0.6
P0.5
P0.4
P0.3
P0.2
P0.1
P0.0
十六进制数
0101H
0103H
表3.28155命令字表
TM2
TM1
IEB
IEA
PC2
PC1
命令字
3.3.3变频器的选择
①变频器工作控制的原理
根据设计要求,浪花与音乐要保持同步,在此提出了以下3点问题:
1)怎样实现喷泉与音乐的同步;
2)变频器能否瞬时响应;
3)整套设备的调试和绝缘安全性。
为此根据要求对同步控制的可行性进行分析如下:
利用音乐的音频信号对变频器进行控制,音乐的音频信号本身是一个功率很小的交流电压信号,经过整流滤波稳压可以输出一个相对应的直流电压信号,相对来讲该信号很微弱,再经过对该信号进行功率放大,可以输出0-5V的标准直流电压信号,即可以实现音频信号对变频器的控制,即对水泵浪花的控制,从而实现音乐对喷泉浪花的控制。
为了达到这一控制原理,下面对通用性的变频器的工作原理进行了简单的介绍:
1—整流部分2—滤波部分3—逆变部分4—控制部分5—负载
图3.2通用变频器基本电路
通用变频器的基本电路如图3.2所示,它由4个主要部分组成,分别是:
1—整流部分,把交流电压变为直流电压;
2—滤波部分,把脉动较大的交流电进行滤波变成比较平滑的直流电;
3—逆变部分,把直流电又转换成三相交流电,这种逆变电路一般是利用功率开关元件按照控制电路的驱动、输出脉冲宽度被调制的PWM波,或者正弦脉宽调制SPWM波,当这种波形的电压加到负载上时,由于负载电感作用,使电流连续化,变成接近正弦形波的电流波形;
4—控制电路是用来产生输出逆变桥所需要的各驱动信号,这些信号是受外部指令决定的,有频率、频率上升下降速率、外部通断控制以及变频器内部各种各样的保护和反馈信号的综合控制等。
通用变频器对负载的输出波形都是双极性SPWM波,这种波形可以大幅度提高变频器的效率,但同时这种波形使变频器的输出区别于正常正弦波,产生了变频器很多特殊之处。
双极性SPWM波如图3.3所示,其中图3.3(a)是三角形的载波与正弦形信号进行比较的情形,图3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 音乐喷泉