高中所有知识点归纳Word格式.docx
- 文档编号:21560224
- 上传时间:2023-01-31
- 格式:DOCX
- 页数:17
- 大小:27.26KB
高中所有知识点归纳Word格式.docx
《高中所有知识点归纳Word格式.docx》由会员分享,可在线阅读,更多相关《高中所有知识点归纳Word格式.docx(17页珍藏版)》请在冰豆网上搜索。
②的图象关于点中心对称周期为2;
③的图象关于直线轴对称周期为2;
④的图象关于点中心对称,直线轴对称周期为4;
8.基本初等函数的图像与性质
⑴幂函数:
(;
⑵指数函数:
;
⑶对数函数:
⑷正弦函数:
⑸余弦函数:
(6)正切函数:
⑺一元二次函数:
⑻其它常用函数:
1正比例函数:
②反比例函数:
特别的
2函数;
9.二次函数:
⑴解析式:
①一般式:
②顶点式:
,为顶点;
③零点式:
。
⑵二次函数问题解决需考虑的因素:
①开口方向;
②对称轴;
③端点值;
④与坐标轴交点;
⑤判别式;
⑥两根符号。
⑶二次函数问题解决方法:
①数形结合;
②分类讨论。
10.函数图象:
⑴图象作法:
①描点法(特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1平移变换:
ⅰ,2———“正左负右”
ⅱ———“正上负下”;
3伸缩变换:
ⅰ,(———纵坐标不变,横坐标伸长为原来的倍;
ⅱ,(———横坐标不变,纵坐标伸长为原来的倍;
4对称变换:
ⅰ;
ⅱ;
ⅲ;
ⅳ;
5翻转变换:
ⅰ———右不动,右向左翻(在左侧图象去掉);
ⅱ———上不动,下向上翻(||在下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;
①曲线C1:
f(x,y)=0关于点(a,b)的对称曲线C2方程为:
f(2a-x,2b-y)=0;
②曲线C1:
f(x,y)=0关于直线x=a的对称曲线C2方程为:
f(2a-x,y)=0;
③曲线C1:
f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x)(x∈R)y=f(x)图像关于直线x=对称;
特别地:
f(a+x)=f(a-x)(x∈R)y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
12.函数零点的求法:
⑴直接法(求的根);
⑵图象法;
⑶二分法.
13.导数
⑴导数定义:
f(x)在点x0处的导数记作;
⑵常见函数的导数公式:
①;
⑥;
⑦;
⑧。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:
ⅰ所给点是切点吗?
ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ是增函数;
ⅱ为减函数;
ⅲ为常数;
③利用导数求极值:
ⅰ求导数;
ⅱ求方程的根;
ⅲ列表得极值。
④利用导数最大值与最小值:
ⅰ求的极值;
ⅱ求区间端点值(如果有);
ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:
①(常数);
③(其中。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:
①求曲边梯形的面积:
3求变速直线运动的路程:
③求变力做功:
第三部分三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化:
弧度,弧度,弧度
⑵弧长公式:
扇形面积公式:
2.三角函数定义:
角中边上任意一点为,设则:
3.三角函数符号规律:
一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:
“函数名不(改)变,符号看象限”;
5.⑴对称轴:
对称中心:
⑵对称轴:
6.同角三角函数的基本关系:
7.两角和与差的正弦、余弦、正切公式:
①
②③。
8.二倍角公式:
③。
9.正、余弦定理:
⑴正弦定理:
(是外接圆直径)
⑵余弦定理:
等三个;
等三个。
10。
几个公式:
⑴三角形面积公式:
⑵内切圆半径r=;
外接圆直径2R=
11.已知时三角形解的个数的判定:
第四部分立体几何
1.三视图与直观图:
原图形与直观图面积之比为。
2.表(侧)面积与体积公式:
⑴柱体:
①表面积:
S=S侧+2S底;
②侧面积:
S侧=;
③体积:
V=S底h
⑵锥体:
S=S侧+S底;
V=S底h:
⑶台体:
S=S侧+S上底S下底;
V=(S+)h;
⑷球体:
S=;
②体积:
V=。
3.位置关系的证明(主要方法):
⑴直线与直线平行:
①公理4;
②线面平行的性质定理;
③面面平行的性质定理。
⑵直线与平面平行:
①线面平行的判定定理;
②面面平行线面平行。
⑶平面与平面平行:
①面面平行的判定定理及推论;
②垂直于同一直线的两平面平行。
⑷直线与平面垂直:
①直线与平面垂直的判定定理;
②面面垂直的性质定理。
⑸平面与平面垂直:
①定义---两平面所成二面角为直角;
②面面垂直的判定定理。
理科还可用向量法。
4.求角:
(步骤-------Ⅰ。
找或作角;
Ⅱ。
求角)
⑴异面直线所成角的求法:
1平移法:
平移直线,2构造三角形;
3②补形法:
补成正方体、平行六面体、长方体等,4发现两条异面直线间的关系。
理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);
②先求斜线上的点到平面距离h,与斜线段长度作比,得sin。
理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:
在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:
由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:
利用面积射影公式:
其中为平面角的大小;
对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:
找或作垂线段;
求距离)
⑴两异面直线间的距离:
一般先作出公垂线段,再进行计算;
⑵点到直线的距离:
一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:
借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5等体积法;
理科还可用向量法:
⑷球面距离:
(步骤)
(Ⅰ)求线段AB的长;
(Ⅱ)求球心角∠AOB的弧度数;
(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为,则S侧cos=S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为则:
cos2+cos2+cos2=1;
sin2+sin2+sin2=2。
②长方体体对角线与过同一顶点的三侧面所成的角分别为则有cos2+cos2+cos2=2;
sin2+sin2+sin2=1。
⑸正四面体的性质:
设棱长为,则正四面体的:
1高:
②对棱间距离:
③相邻两面所成角余弦值:
④内切2球半径:
外接球半径:
第五部分直线与圆
1.直线方程
⑴点斜式:
⑵斜截式:
⑶截距式:
⑷两点式:
⑸一般式:
,(A,B不全为0)。
(直线的方向向量:
(,法向量(
2.求解线性规划问题的步骤是:
(1)列约束条件;
(2)作可行域,写目标函数;
(3)确定目标函数的最优解。
3.两条直线的位置关系:
4.直线系
5.几个公式
⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:
();
⑵点P(x0,y0)到直线Ax+By+C=0的距离:
⑶两条平行线Ax+By+C1=0与Ax+By+C2=0的距离是;
6.圆的方程:
⑴标准方程:
②。
⑵一般方程:
(
Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆A=C≠0且B=0且D2+E2-4AF>
0;
7.圆的方程的求法:
⑴待定系数法;
⑵几何法;
⑶圆系法。
8.圆系:
⑴;
注:
当时表示两圆交线。
⑵。
9.点、直线与圆的位置关系:
(主要掌握几何法)
⑴点与圆的位置关系:
(表示点到圆心的距离)
①点在圆上;
②点在圆内;
③点在圆外。
⑵直线与圆的位置关系:
(表示圆心到直线的距离)
①相切;
②相交;
③相离。
⑶圆与圆的位置关系:
(表示圆心距,表示两圆半径,且)
①相离;
②外切;
③相交;
④内切;
⑤内含。
10.与圆有关的结论:
⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:
x0x+y0y=r2;
过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:
(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:
(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分圆锥曲线
1.定义:
⑴椭圆:
⑵双曲线:
⑶抛物线:
略
2.结论
⑴焦半径:
①椭圆:
(e为离心率);
(左“+”右“-”);
②抛物线:
⑵弦长公式:
;
(Ⅰ)焦点弦长:
=x1+x2+p=;
(Ⅱ)通径(最短弦):
①椭圆、双曲线:
2p。
⑶过两点的椭圆、双曲线标准方程可设为:
(同时大于0时表示椭圆,时表示双曲线);
⑷椭圆中的结论:
①内接矩形最大面积:
2ab;
②P,Q为椭圆上任意两点,且OP0Q,则;
③椭圆焦点三角形:
<
Ⅰ>
.,();
Ⅱ>
.点是内心,交于点,则;
④当点与椭圆短轴顶点重合时最大;
⑸双曲线中的结论:
①双曲线(a>
0,b>
0)的渐近线:
②共渐进线的双曲线标准方程为为参数,≠0);
③双曲线焦点三角形:
.P是双曲线-=1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为;
④双曲线为等轴双曲线渐近线为渐近线互相垂直;
(6)抛物线中的结论:
①抛物线y2=2px(p>
0)的焦点弦AB性质:
.x1x2=;
y1y2=-p2;
.;
Ⅲ>
.以AB为直径的圆与准线相切;
Ⅳ>
.以AF(或BF)为直径的圆与轴相切;
Ⅴ>
.。
②抛物线y2=2px(p>
0)内结直角三角形OAB的性质:
<
.恒过定点;
.中点轨迹方程:
.,则轨迹方程为:
③抛物线y2=2px(p>
0),对称轴上一定点,则:
.当时,顶点到点A距离最小,最小值为;
.当时,抛物线上有关于轴对称的两点到点A距离最小,最小值为。
3.直线与圆锥曲线问题解法:
⑴直接法(通法):
联立直线与圆锥曲线方程,构造一元二次方程求解。
注意以下问题:
①联立的关于“”还是关于“”的一元二次方程?
②直线斜率不存在时考虑了吗?
③判别式验证了吗?
⑵设而不求(代点相减法):
--------处理弦中点问题
步骤如下:
①设点A(x1,y1)、B(x2,y2);
②作差得;
③解决问题。
4.求轨迹的常用方法:
(1)定义法:
利用圆锥曲线的定义;
(2)直接法(列等式);
(3)代入法(相关点法或转移法);
⑷待定系数法;
(5)参数法;
(6)交轨法。
第七部分平面向量
⑴设a=(x1,y1),b=(x2,y2),则:
①a‖b(b≠0)a=b(x1y2-x2y1=0;
②a⊥b(a、b≠0)a•b=0x1x2+y1y2=0.
⑵a•b=|a||b|cos<
a,b>
=x2+y1y2;
①|a|cos<
叫做a在b方向上的投影;
|b|cos<
叫做b在a方向上的投影;
6a•b的几何意义:
a•b等于|a|与|b|在a方向上的投影|b|cos<
的乘积。
⑶cos<
=;
⑷三点共线的充要条件:
P,A,B三点共线;
附:
(理科)P,A,B,C四点共面。
第八部分数列
⑴等差数列;
⑵等比数列
2.等差、等比数列性质
等差数列等比数列
通项公式
前n项和
性质①an=am+(n-m)d,①an=amqn-m;
②m+n=p+q时am+an=ap+aq②m+n=p+q时aman=apaq
③成AP③成GP
④成AP,④成GP,
等差数列特有性质:
1项数为2n时:
S2n=n(an+an+1)=n(a1+a2n);
2项数为2n-1时:
S2n-1=(2n-1);
3若;
若;
若。
3.数列通项的求法:
⑴分析法;
⑵定义法(利用AP,GP的定义);
⑶公式法:
累加法(;
⑷叠乘法(型);
⑸构造法(型);
(6)迭代法;
⑺间接法(例如:
);
⑻作商法(型);
⑼待定系数法;
⑽(理科)数学归纳法。
当遇到时,要分奇数项偶数项讨论,结果是分段形式。
4.前项和的求法:
⑴拆、并、裂项法;
⑵倒序相加法;
⑶错位相减法。
5.等差数列前n项和最值的求法:
⑵利用二次函数的图象与性质。
第九部分不等式
1.均值不等式:
①一正二定三相等;
②变形,。
2.绝对值不等式:
3.不等式的性质:
⑵;
⑶;
⑷;
⑸;
(6)
。
4.不等式等证明(主要)方法:
⑴比较法:
作差或作比;
⑵综合法;
⑶分析法。
第十部分复数
1.概念:
⑴z=a+bi∈Rb=0(a,b∈R)z=z2≥0;
⑵z=a+bi是虚数b≠0(a,b∈R);
⑶z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+=0(z≠0)z2<
⑷a+bi=c+dia=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:
设z1=a+bi,z2=c+di(a,b,c,d∈R),则:
(1)z1±
z2=(a+b)±
(c+d)i;
⑵z1.z2=(a+bi)•(c+di)=(ac-bd)+(ad+bc)i;
⑶z1÷
z2=(z2≠0);
3.几个重要的结论:
⑷
⑸性质:
T=4;
(6)以3为周期,且;
=0;
(7)。
4.运算律:
(1)
5.共轭的性质:
⑷。
6.模的性质:
第十一部分概率
1.事件的关系:
⑴事件B包含事件A:
事件A发生,事件B一定发生,记作;
⑵事件A与事件B相等:
若,则事件A与B相等,记作A=B;
⑶并(和)事件:
某事件发生,当且仅当事件A发生或B发生,记作(或);
⑷并(积)事件:
某事件发生,当且仅当事件A发生且B发生,记作(或);
⑸事件A与事件B互斥:
若为不可能事件(),则事件A与互斥;
(6)对立事件:
为不可能事件,为必然事件,则A与B互为对立事件。
2.概率公式:
⑴互斥事件(有一个发生)概率公式:
P(A+B)=P(A)+P(B);
⑵古典概型:
⑶几何概型:
第十二部分统计与统计案例
1.抽样方法
⑴简单随机抽样:
一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
①每个个体被抽到的概率为;
②常用的简单随机抽样方法有:
抽签法;
随机数法。
⑵系统抽样:
当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
步骤:
①编号;
②分段;
③在第一段采用简单随机抽样方法确定其时个体编号;
④按预先制定的规则抽取样本。
⑶分层抽样:
当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
每个部分所抽取的样本个体数=该部分个体数
2.总体特征数的估计:
⑴样本平均数;
⑵样本方差;
⑶样本标准差=;
3.相关系数(判定两个变量线性相关性):
⑴>
0时,变量正相关;
0时,变量负相关;
⑵①越接近于1,两个变量的线性相关性越强;
②接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和:
⑵残差:
⑶残差平方和:
⑷回归平方和:
-;
⑸相关指数。
①得知越大,说明残差平方和越小,则模型拟合效果越好;
②越接近于1,,则回归效果越好。
5.独立性检验(分类变量关系):
随机变量越大,说明两个分类变量,关系越强,反之,越弱。
第十四部分常用逻辑用语与推理证明
1.四种命题:
⑴原命题:
若p则q;
⑵逆命题:
若q则p;
⑶否命题:
若p则q;
⑷逆否命题:
若q则p
原命题与逆否命题等价;
逆命题与否命题等价。
2.充要条件的判断:
(1)定义法----正、反方向推理;
(2)利用集合间的包含关系:
例如:
若,则A是B的充分条件或B是A的必要条件;
若A=B,则A是B的充要条件;
3.逻辑连接词:
⑴且(and):
命题形式pq;
pqpqpqp
⑵或(or):
真真真真假
⑶非(not):
命题形式p.真假假真假
假真假真真
假假假假真
4.全称量词与存在量词
⑴全称量词-------“所有的”、“任意一个”等,用表示;
全称命题p:
全称命题p的否定p:
⑵存在量词--------“存在一个”、“至少有一个”等,用表示;
特称命题p:
特称命题p的否定p:
第十五部分推理与证明
1.推理:
⑴合情推理:
归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:
由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:
由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
类比推理是特殊到特殊的推理。
⑵演绎推理:
从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:
⑴大前提---------已知的一般结论;
⑵小前提---------所研究的特殊情况;
⑶结论---------根据一般原理,对特殊情况得出的判断。
二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
综合法又叫顺推法或由因导果法。
⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。
分析法又叫逆推证法或执果索因法。
2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
数学归纳法(仅限理科)
一般的证明一个与正整数有关的一个命题,可按以下步骤进行:
⑴证明当取第一个值是命题成立;
⑵假设当命题成立,证明当时命题也成立。
那么由⑴⑵就可以判定命题对从开始所有的正整数都成立。
这种证明方法叫数学归纳法。
①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
3的取值视题目而4定,5可能是1,6也可能是2等。
第十六部分理科选修部分
1.排列、组合和二项式定理
⑴排列数公式:
=n(n-1)(n-2)…(n-m+1)=(m≤n,m、n∈N*),当m=n时为全排列=n(n-1)(n-2)…3.2.1=n!
;
⑵组合数公式:
(m≤n),;
⑶组合数性质:
⑷二项式定理:
①通项:
②注意二项式系数与系数的区别;
⑸二项式系数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 所有 知识点 归纳