蒸汽网路水力计算Word文档下载推荐.docx
- 文档编号:21555731
- 上传时间:2023-01-31
- 格式:DOCX
- 页数:45
- 大小:1.75MB
蒸汽网路水力计算Word文档下载推荐.docx
《蒸汽网路水力计算Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《蒸汽网路水力计算Word文档下载推荐.docx(45页珍藏版)》请在冰豆网上搜索。
但因K值
不同,需按下式进行修正。
Lsh.d=(Kbi/Ksh)0.25•Lbi.d=(0.5/0.2)
=1.26•Lbi.dm
义同热水网路的水力计算。
当采用当量长度法进行水力计算,蒸汽网路中计算管段的总压降为
△P=R(L+Ld)=RLzh
式中Lzh――管段的折算长度,m。
【例题9-1】蒸汽网路中某一管段,通过流量G=4.0t/h,蒸汽平均密度p=4.0kg/m
(1)如选用0108X4的管子,试计算其比摩阻R值。
(2)如要求控制比摩阻R在200Pa/m以下,试选用合适的管径。
【解】
(1)根据附录11—1的蒸汽管道水力计算表(pbi=1.0kg/m3),查出当Gt=4.0t/h,公称直经DN100时,
FI=2342.2Pa/m;
Vbi=142m/s
管段流过蒸汽的实际密度psh=4.0kg/m3。
需要进行修正,得出实际的比摩阻Rsh和流速vsh值
为
vsh=(pbi/psh)•vbi=(1/4)X142=35.5m/s
Rh=(pbi/psh)•Rbi=(1/4)X2342.2=585.6Pa/m
(2)根据上述计算可见,在相同的蒸汽质量流量G和同一管径d条件下,流过的蒸汽密度越大,其比
摩阻R及流速v值越小,呈反比关系。
因此,在蒸汽密度p=4.0kg/卅,要求控制的比摩阻为200Pa/m
以下,因表中蒸汽密度为p=1.0kg/m3,则表中控制的比摩阻值,相应为200X(4/1)=800Pa/m
以下。
根据附录9—1,设p=1.0kg/m3,控制比摩阻R在800Pa/m以下,选择合适的管径,得出应选用的管道的公称直径为DN125mm相应的Q值及Vbi值为
R)i=723.2Pa/m;
vbi=90.6m/s
最后,确定蒸汽密度p=4.0kg/m3时的实际比摩阻及流速值。
Rh=(pbi/psh)•Rbi=(1/4)X723.2=180.8Pa/m<
200Pa/m
Vsh=(pbi/psh)•vbi=(1/4)X90.6=22.65m/s
三、蒸汽网路水力计算方法
1、准确的计算方法一一按管段取蒸汽的平均密度
式中ps、pm分别为计算管段始端和末端的蒸汽密度,kg/m3。
逐段进行计算
特点:
该方法较准确的计算管段节点蒸汽参数(Ps、Ts),计算较准确。
2、简略计算方法一一对整个系统取蒸汽平均密度
式中ps、pm分别为系统始端和末端的蒸汽密度,kg/m3。
该方法计算误差比较大,但计算工作量小。
3、按一定管长取管段始端的密度
具体取法:
每隔50米管长取始端蒸汽的密度,逐段进行计算。
特点:
该方法计算的准确性介于上述两者之间。
4、蒸汽网路水力计算的任务
要求选择蒸汽网路各管段的管径,以保证各热用户蒸汽流量的使用参数的要求
四、计算步骤(准确的计算方法)
1.根据各热用户的计算流量,确定蒸汽网路各管段的计算流量:
a.各热用户的计算流量,应根据各热用户的蒸汽参数及其计算热负荷,按下式确定
Gx=AQ//r,t/h(9-12)
式中G,――热用户的计算流量,t/h;
Q/――热用户的计算热负荷,通常用GJ/h,MW或Mkcal/h表示;
r用汽压力下的汽化潜热,kJ/kg或kcal/kg;
A――采用不同计算单位的系数,见下表
采用的计算单位
Q/—GJ/h=109J/hr—kJ/kg
Q/—MW=106Wr—kJ/kg
Q/—Mkcal/h=106kcal/hr—kcal/kg
A
1000
3600
b•蒸汽网路中各管段的计算流量是由该管段所负担的各热用户的计算流量之和来确定。
但对蒸汽管网
的主干线管段,应根据具体情况,乘以各热用户的同时使用系数。
2•确定蒸汽网路主干线和平均比摩阻
主干线应是从热源到某一热用户的平均比摩阻最小的一条管线。
主干线的平均比摩阻,按下式求得
Rpj=△P/刀L(1+aPa/m(9-13)
式中△P—热网主干线始端和末端的蒸汽压力差,Pa;
刀L—主干线长度,m;
a—局部阻力所占比例系数,可选用附录9-3的数值。
3•进行主干线管段的水力计算
a、假定管段末端的压力:
计算每米管长的压力降△P/RLPa/m
其中△P:
主干线始、末端的压力差,Pa。
计算管段末端的压力Pm=Ps-(△P/)L1,Pa(9-14)
通常从热源出口的总管段开始进行水力计算。
热源出口蒸汽的参数为已知,现需先假设该管段末端蒸汽压力,pm=(AP/EL由此得出该管段蒸汽的平均密度P
pj=(p+p)/2,kg/m3(9-15)
式中$、pm计算管段始端和末端的蒸汽密度,kg/m3°
4•确定管径(通过水力计算表由G、Rpj查出d、R值)
a.根据该管段假设的蒸汽平均密度ppj和按式9-13确定的平均比摩阻Rpj值,将此R值换算为蒸汽管路
水力计算表⑹条件下的平均比摩阻Rbi•值。
通常水力计算表采用pbi=1kg/m3,得
Rbipj/Rpj=pj/bp
Rbipj=(pj/bp・Rpj
b.根据计算管段的计算流量和水力计算表pbi条件下得出的Rbipj值,按水力计算表,选择蒸汽管道直
径d、比摩阻Rbi和蒸汽在管道内的流速vbi°
c.根据该管段假设的平均密度ppj,将从水力计算表中得出的比摩阻Rbi和vbi值,换算为在舸条件下的
实际比摩阻Rsh和流速Vsh。
Rsh=Rbi(pbippj),Pa/m;
Vsh=vbi(pbippj),m/So
蒸汽在管道内的最大允许流速,按《热网规范》,不得大于下列规定
过热蒸汽:
公称直径DN>
200mm时,80m/s
公称直径DNK200mm时,50m/s
饱和蒸汽:
200mm时,60m/s
公称直径DNK200mm时,35m/s
5•计算管段的局部阻力当量长度及管段压力降
a.按所选的管径,计算管段的局部阻力总当量长度Ld.
由局部阻力系数查附录5-2,注意K值引起的修正。
b.计算管段的实际压力降,APh=Rsh(L+Ld)Pa。
6•较核管段的平均密度
a.计算管段末端的压力值Pm/=Ps-APsh,Pa(9-16)
查得相应Pm‘条件下的p'
m值。
b.计算管段的平均密度p/pj=(s+Pm)/2,kg/m3(9-17)
C.和开始假设平均密度ppj进行比较,如两者相等或差别很小,则该管段的水力计算过程结束,进行下一
管段的计算,如两者差别较大,则应重新假设Pj然后按同一计算步骤和方法进行计算,直到两者相
等或差别很小为止,重新假设的ppj=/pj。
由此蒸汽网路主干线所有管段逐次进行水力计算。
7.分支管路的水力计算(计算方法同上)
由主干线计算结果而确定支线始端压力;
由用户用汽压力确定支线末端压力,重复步骤
(2)-(6)。
五、计算例题
【例题9-2】某工厂区蒸汽供热管网,其平面布置图见下图。
锅炉出口的饱和蒸汽表压力为10bar。
各用户系统所要求的蒸汽表压力及流量列于图9-1上。
试进行蒸汽网路的水力计算。
主干线不考虑同
时使用系数。
图9-1例题9-1附图
【解】从锅炉出口到用户3的管线为主干线
5
则Rpj=AP/刀L(1+aj)=[(10-7)X10]/[(500+300+100)(1+0.8)]=185.2Pa/m
式中apj=0.8,采用附录9-3的估算数值。
1.已知锅炉出口的蒸汽压力,进行管段1的水力计算
首先计算锅炉出口的管段。
预先假设管段1末端的蒸汽压力。
假设时,可按平均比摩阻,按
比例给定末端蒸汽压力。
女口Pm1=Ps1-AP-L1/刀L=10—(10-7)X500/900=8.33bar
将此假设的管段末端压力Pm值,列入表9-1,第8栏中。
2.根据管段始、末端的蒸汽压力,求出该管段假设的平均密度
Ppj=(ps+pm)/2=(P11+P9.8.33)/2
=(5.64+4.81)/2=5.225kg/m3
3.将平均比摩阻换算为水力计算表pbi=1kg/m3条件下的等效值,即
Rbi■pj=ppj(Rpj=5.225X185.2=968Pa/m
将Rji■pj值列入表内。
4.根据Fbi(pj的大致控制值,利用附录9-1,选择合适的管径
对管段1:
蒸汽流量Gt=8.0t/h,选用管子的公称直径DN150mm相应的比摩阻及流速值为:
R>
i=1107.4Pa/m;
vbi=126m/s
将此值分别列入表9-1中11和12栏中。
5.根据上述数据,换算为实际假设条件下的比摩阻及流速值
Rh=(1/ppj)Rbi=(1/5.225)X1107.4=211.9Pa/m
Vsh=(1/ppj)vbi=(1/5.225)X126=24.1m/s
6.根据选用的管径DN150mm按附录5-2,求出管段的当量长度Ld值及其折算长度Lzh值
管段1的局部阻力组成有:
1个截止阀,7个方形补偿器(锻压弯头)。
查附录5-2
Ld=(24.6+7X15.4)X1.26=166.8m
管段1的折算长度Lzh=L+Ld=500+166.8=666.8m
将Ld及Lzh值分别列入表5和6栏中。
7.求管段1在假设平均密度ppj条件下的压力损失,列入表第15栏中。
1的分支线为例,进行水力计算。
8.6bar,则分支线4的平均比摩
△Psh=Rsh•Lzh=211.9x666.8=141295Pa~1.41bar
8.求管段1末端的蒸汽表压力,其值列入表第16栏中
P,m=Ps—△Psh=10—1.41=8.59bar
9.验算管段1的平均密度p/胃,是否和原先假定的平均蒸汽密度ppj相符
ppj=(ps+pm)/2=(p11+p9.59)/2
=(5.64+4.93)/2=5.285kg/m3
原假定的蒸汽平均密度ppj=5.225kg/m3,两者相差较大,需重新计算。
重新计算时,通常都以计算得出的蒸汽平均密度p/胃,作为该管段的假设蒸汽平均密度ppj
再重复以上计算方法,一般重复一次或两次,就可满足p/pj=ppj的计算要求。
管段1得出的计算结果,列在表9-1中。
假设平均蒸汽密度ppj=5.285kg/m3,计算后的蒸
汽平均密度p/pj=5.29kg/m3。
两者差别很小,计算即可停止。
10.计算结果得出管段1末端蒸汽表压力为8.6bar,以此值作为管段2的始端蒸汽表压力值,按上述
计算步骤和方法进行其它管段的计算。
主干线的水力计算结果见表所列。
用户3入口处的蒸汽表压力为7.24bar,稍有富裕。
主干线水力计算完成后,即可进行分支线的水力计算。
以通向用户
11、分支线的水力计算
(1).根据主干线的水力计算主干线和分支线节点的蒸汽表压力为阻为
Rj=[(8.6—7.0)x10]/[120(1+0.8)]=704.7Pa/m
(2).根据分支管始、末端蒸汽压力,求假设的蒸汽平均密度
ppj=(p9.6+p8.0)/2=(4.94+4.16)/2=4.55kg/m
(3).将平均比摩阻Rpj值换算为水力计算表pbi=1kg/m3条件下的等效值
Rji-pj=ppj•Rpj=4.55x740.7=3370Pa/m
3
(4).根据pbi=1kg/m的水力计算表,选择合适的管径
蒸汽流量G=3.0t/h,选用管子DN80mm相应的比摩阻及流速为
i=3743.6Pa/m;
vbi=158m/s
(5).换算到在实际假设条件psh下的比摩阻及流速值
阳=(1/ppj)•Rbi=(1/4.55)x3743.6=822.8Pa/m
vsh=(1/ppj)•vbi=(1/4.55)x158=34.7m/s
(6).计算管段4的当量长度及折算长度
管段4的局部阻力的组成:
1个截止阀、1个分流三通、2个方形补偿器。
当量长度Ld=1.26(10.2+3.82+2x7.9)=37.6m
折算长度Lzh=L+Ld=120+37.6=157.6m
(7).求管段4的压力损失
△Psh=Rsh•Lzh=822.8x157.6=129673Pa〜1.3bar
(8).求管段4的末端蒸汽表压力
Pm=Ps—△Psh=8.6—1.3=7.3bar
(9).验算管段4的平均密度p/pj
原假定的蒸汽平均密度ppj=4.55kg/m3,ppj和p/pj相差较大,需再次计算。
再次计算结
果列入表中。
最后求得到达用户1的蒸汽表压力为7.32bar,满足使用要求。
(10).通向用户2分支管线的管段5的水力计算,见水力计算表所示。
用户2处蒸汽表压力为7.15bar,满足使用要求。
室外咼压蒸汽网路水力计算表
8.5室内低压蒸汽供暖系统路的水利计算方法和例题
、室内低压蒸汽共暖系统水力计算原则和方法
在低压蒸汽供暖系统中,靠锅炉出口处蒸汽本身的压力,使蒸汽沿管道流动,最后进入散热器凝结放热。
1.水力计算原则
蒸汽在管道流动时,同样有摩擦压力损失APy和局部阻力损失APj。
计算蒸汽管道内的单位长度摩擦压力损失(比摩阻)时,同样可利用达西•维斯巴赫公式进行计算。
式中符号同前。
在利用上式为基础进行水力计算时,虽然蒸汽的流量因沿途凝结而不断减少,蒸汽的密度也因蒸汽压力沿管路降低而变小,但这变化并不大,在计算低压蒸汽管路时可以忽略,而认为每个管段内的流量和整个系统的密度p是不变的。
在低压蒸汽供暖管路中,蒸汽的流动状态处于紊流过度区,
其摩擦系数入值可按第四章公式进行计算。
室内低压蒸汽供暖系统管壁的粗糙度K=0.2mm
附录8-3给出低压蒸汽管径计算表,制表时蒸汽的密度取值0.6Kg/m3计算。
低压蒸汽供暖管路的局部压力损失的确定方法和热水供暖管路相同,各构件的局部阻力系数
Z值同样可按附录4-2确定,其动压头值可见附录8-4。
在散热器入口处,蒸汽应有1500--2000Pa的剩余压力,以克服阀门和散热器入口的局部阻力,使蒸汽进入散热器,并将散热器内的空气排出。
2.水力计算方法
在进行低压蒸汽供暖系统管路的水力计算时,同样先从最不利的管路开始,亦即从锅炉到最远散热器的管路开始计算。
为保证系统均匀可靠地供暖,尽可能使用较低的蒸汽压力供暖,进行最不利的管路的水利计算时,通常采用控制比压降或按平均比摩阻方法进行计算。
按控制比压降法是将最不利管路的每1m总压力损失约控制在100Pa/m来设计。
平均比摩阻法是在已知锅炉或室内入口处蒸汽压力条件下进行计算。
R.j=a(Pg-2000)/EL
式中a---沿程压力损失占总压力损失的百分数,取
Pg---锅炉出口或室内用户入口的蒸汽压力,2000……散热器入口处的蒸汽剩余压力,EL……最不利管路管段的总长度,
当锅炉出口或室内用户入口处蒸汽压力高时,得出的平均比摩阻冷」值会较大,此时控制比压
降值按不超过100Pa/m设计。
最不利管路各管段的水力计算完成后,即可进行其它立管的水力计算。
可按平均比摩阻法来选择其它立管的管径,但管内流速不得超过下列的规定最大允许流速(见《暖通规范》):
当汽、水同向流动时
当汽、水逆向流动时
30m/s
20m/s
规定最大允许流速主要是为了避免水击和噪声,便于排除蒸汽管路中的凝水;
因此,对汽水逆向流动时,蒸汽在管道中的流速限制的低一些,在实际工程设计中,常采用更低的流速,使运行更可靠些。
低压蒸汽供暖系统凝水管路,在排气管前的管路为干凝水管路,管路截面的上半部为空气,管路截面下半部流动凝水,凝水管路必须保证0.005以上的向下坡度,属非满管流状态。
目前,确定
干凝水管路管径的理论计算方法,是以靠坡度无压流动的水力学计算公式为依据,并根据实践经验总结,制定出不同管径下所能担负的输热能力。
排气管后面的凝水管路,可以全部充满凝水,称为湿凝水干管;
其流动状态为满管流。
在相同热负荷条件下,湿式凝水管选用的管径比干式的小。
低压蒸汽供暖系统干凝水管路和湿凝水管路的管径选择表可见附录8-5。
二、室内低压蒸汽供暖系统管路水力计算例题
【例题8-1】图8-20为重力回水的低压蒸汽供暖管路系统的一个支路。
锅炉房设在车间一侧。
每
个散热器的热负荷均为4000W。
每根立管及每个散热器的蒸汽支管上均装有截止阀。
每个散热器凝水支
管上装一个恒温式疏水器。
总蒸汽立管保温。
图8-20例题8-1的管路计算图
图上小圆圈内的数字表示管段号。
圆圈旁的数字:
上行表示热负荷(W),下行表示管段长度(m)。
罗
马数字表示立管编号。
要求确定各管段的管径及锅炉蒸汽压力。
【解】1.确定锅炉压力
根据已知条件,从锅炉出口到最远散热器的最不利支管的总长度EL=80m。
如按控制每米总压力损
失(比压降)为100Pa/m设计,并考虑散热器前所需的蒸汽剩余压力为2000Pa,则锅炉的运行表压力
Pb应为
Pb=80100+2000=10KPa
在锅炉正常运行时,凝水总立管在比锅炉蒸发面高出约1.0m下面的管段必然全部充满凝水考虑锅炉
工作压力波动因素,增加200-250mm的安全高度。
因此,重力回水的干凝水干管(图中排汽管A点前的凝水管路)的布置位置,至少要比锅炉蒸发面高出h=1.0+0.25=1.25m。
否则,系统中的空气无法从
排汽管排出。
2•最不利管路的水力计算
采用控制比压降法进行最不利管路的水力计算。
低压蒸汽供暖系统摩擦压力损失约占总压力损失的60%,因此,根据预计的平均比摩阻:
Rpj=100>
0.6
=60Pa/m左右和各管段的热负荷,选择各管段的管径及计算其压力损失。
计算时利用附录8-3,附录8-4和附录4-2。
附带说明,利用附录8-3时,当计算热量在表中两个热量之间,相应的流速值可用线性关系折算。
比摩阻R和流速v(热量Q),可按平方关系折算得出。
如计算管段1,热负荷Q1=71000W,按附录8-3,现选用d=70mm。
根据表中数据可知:
当d=70mm,Q=61900W时,相应的流速v=12.1m/s,比摩阻R=20Pa/m。
当选用相同的管径d=70mm,热负荷改变为=71000W时,相应的流速V1和比摩阻R1的数值,可按下式关系式折算得出。
V1=v©
1/Q=12.1(>
1000/61900)=13.9m/s
R1=RX(Q1/Q)2=20>
1000/61900)2=26.3Pa/s
低压蒸汽供暖系统管路计算表(例8-1)表8-1
)
管径d(mm)
比摩阻R(Pa/m)
流速v(m/s)
摩擦压力损失
APy=RI
(Pa)
局部阻力系数SE
动压头Pd(Pa)
局部压力损失APj=Pd(Pa)
4
6
7
8
9
10
70
26.3
13.9
315.6
10.5
61.2
642.6
50
29.3
13.1
380.9
2.0
54.3
108.6
40
70.4
16.9
844.8
1.0
90.5
32
86.0
1032
40.8
11.2
489.6
39.7
25
47.6
9.8
809.2
12.0
30.4
364.8
20
37.1
7.8
74.2
4.5
19.3
86.9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蒸汽 网路 水力 计算