离散数学试题与答案.docx
- 文档编号:2149584
- 上传时间:2022-10-27
- 格式:DOCX
- 页数:14
- 大小:59.56KB
离散数学试题与答案.docx
《离散数学试题与答案.docx》由会员分享,可在线阅读,更多相关《离散数学试题与答案.docx(14页珍藏版)》请在冰豆网上搜索。
离散数学试题与答案
离散数学试题及答案
一、填空题
1设集合A,B,其中A={1,2,3},B={1,2},则A-B=_____{3}______________;(A)-(B)=____{{3},{1,3},{2,3},{1,2,3}}__________.
2.设有限集合A,|A|=n,则|(A×A)|=___2^(n^2)________.
3.设集合A={a,b},B={1,2},则从A到B的所有映射是____A1={(a,1),(b,1)},A2={(a,2),(b,2)},A3={(a,1),(b,2)},A4={(a,2),(b,1)},______________________,其中双射的是______A3,A4__________.
4.已知命题公式G=(PQ)∧R,则G的主析取式是____P∧Q∧R(m5)____.
5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________.
6设A、B为两个集合,A={1,2,4},B={3,4},则从AB=______{4}______;AB=____{1,2,3,4}_________;A-B=______{1,2}_______.
7.设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________,_________对称性_________,_________传递性_____________.
8.设命题公式G=(P(QR)),则使公式G为真的解释有_____(1,0,0)__________,______(1,0,1)________,________(1,1,0)________.
9.设集合A={1,2,3,4},A上的关系R1={(1,4),(2,3),(3,2)},R1={(2,1),(3,2),(4,3)},则R1R2=___{(1,3),(2,2),(3,1)}____,R2R1=_____{(2,4),(3,3),(4,2)}_____,R12=_______{(2,2),(3,3)}_________.
10.设有限集A,B,|A|=m,|B|=n,则||(AB)|=______2^(m*n)___________.
11设A,B,R是三个集合,其中R是实数集,A={x|-1≤x≤1,xR},B={x|0≤x<2,xR},则A-B=_____{x|-1≤x<0,x∈R}_______,B-A=______{x|1 A∩B=______{x|0≤x≤1,x∈R}__________,. 13.设集合A={2,3,4,5,6},R是A上的整除,则R以集合形式(列举法)记为___________________{(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)}_________. 14.设一阶逻辑公式G=xP(x)xQ(x),则G的前束式是_____yx(P(y)Q(x))_____________. 15.设G是具有8个顶点的树,则G中增加__21___条边才能把G变成完全图。 16.设谓词的定义域为{a,b},将表达式xR(x)→xS(x)中量词消除,写成与之对应的命题公式是________(R(a)∧R(b))→(S(a)∨S(b))______________________. 17.设集合A={1,2,3,4},A上的二元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。 则RS=_______{(1,3),(2,2)}________________, R2=_____________{(1,1),(1,2),(1,3)}_______________. 二、选择题 1设集合A={2,{a},3,4},B={{a},3,4,1},E为全集,则下列命题正确的是(C)。 (A){2}A(B){a}A(C){{a}}BE(D){{a},1,3,4}B. 2设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备(D). (A)自反性(B)传递性(C)对称性(D)反对称性 3设半序集(A,≤)关系≤的哈斯图如下所示,若A的子集B={2,3,4,5},则元素6为B的(B)。 (A)下界(B)上界(C)最小上界(D)以上答案都不对 4下列语句中,(B)是命题。 (A)请把门关上(B)地球外的星球上也有人 (C)x+5>6(D)下午有会吗? 5设I是如下一个解释: D={a,b}, 则在解释I下取真值为1的公式是(D). (A)xyP(x,y)(B)xyP(x,y)(C)xP(x,x)(D)xyP(x,y). 6.若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是(C). (A)(1,2,2,3,4,5)(B)(1,2,3,4,5,5)(C)(1,1,1,2,3)(D)(2,3,3,4,5,6). 7.设G、H是一阶逻辑公式,P是一个谓词,G=xP(x),H=xP(x),则一阶逻辑公式GH是(C). (A)恒真的(B)恒假的(C)可满足的(D)前束式. 8设命题公式G=(PQ),H=P(QP),则G与H的关系是(A)。 (A)GH(B)HG(C)G=H(D)以上都不是. 9设A,B为集合,当(D)时A-B=B. (A)A=B(B)AB(C)BA(D)A=B=. 10设集合A={1,2,3,4},A上的关系R={(1,1),(2,3),(2,4),(3,4)},则R具有(B)。 (A)自反性(B)传递性(C)对称性(D)以上答案都不对 11下列关于集合的表示中正确的为(B)。 (A){a}{a,b,c}(B){a}{a,b,c}(C){a,b,c}(D){a,b}{a,b,c} 12命题xG(x)取真值1的充分必要条件是(A). (A)对任意x,G(x)都取真值1.(B)有一个x0,使G(x0)取真值1. (C)有某些x,使G(x0)取真值1.(D)以上答案都不对. 13.设G是连通平面图,有5个顶点,6个面,则G的边数是(A). (A)9条(B)5条(C)6条(D)11条. 14.设G是5个顶点的完全图,则从G中删去(A)条边可以得到树. (A)6(B)5(C)10(D)4. 15.设图G的相邻矩阵为,则G的顶点数与边数分别为(D). (A)4,5(B)5,6(C)4,10(D)5,8. 三、计算证明题 1.设集合A={1,2,3,4,6,8,9,12},R为整除关系。 (1)画出半序集(A,R)的哈斯图; (2)写出A的子集B={3,6,9,12}的上界,下界,最小上界,最大下界; B无上界,也无最小上界。 下界1,3;最大下界是3. (3)写出A的最大元,最小元,极大元,极小元。 A无最大元,最小元是1,极大元8,12,90+;极小元是1. 2.设集合A={1,2,3,4},A上的关系R={(x,y)|x,yA且xy},求 (1)画出R的关系图; (2)写出R的关系矩阵. 3.设R是实数集合,,,是R上的三个映射,(x)=x+3,(x)=2x,(x)=x/4,试求复合映射•,•,•,•,••. (1)•=((x))=(x)+3=2x+3=2x+3. (2)•=((x))=(x)+3=(x+3)+3=x+6, (3)•=((x))=(x)+3=x/4+3, (4)•=((x))=(x)/4=2x/4=x/2, (5)••=•(•)=•+3=2x/4+3=x/2+3. 4.设I是如下一个解释: D={2,3}, a b f (2) f(3) P(2,2) P(2,3) P(3,2) P(3,3) 3 2 3 2 0 0 1 1 试求 (1)P(a,f(a))∧P(b,f(b)); P(a,f(a))∧P(b,f(b)) =P(3,f(3))∧P(2,f (2)) =P(3,2)∧P(2,3) =1∧0 =0. (2)xyP(y,x). xyP(y,x)=x(P(2,x)∨P(3,x)) =(P(2,2)∨P(3,2))∧(P(2,3)∨P(3,3)) =(0∨1)∧(0∨1) =1∧1 =1. 5.设集合A={1,2,4,6,8,12},R为A上整除关系。 (1)画出半序集(A,R)的哈斯图; (2)写出A的最大元,最小元,极大元,极小元; 无最大元,最小元1,极大元8,12;极小元是1. (3)写出A的子集B={4,6,8,12}的上界,下界,最小上界,最大下界. B无上界,无最小上界。 下界1,2;最大下界2. 6.设命题公式G=(P→Q)∨(Q∧(P→R)),求G的主析取式。 7.(9分)设一阶逻辑公式: G=(xP(x)∨yQ(y))→xR(x),把G化成前束式. G=(xP(x)∨yQ(y))→xR(x) =(xP(x)∨yQ(y))∨xR(x) =(xP(x)∧yQ(y))∨xR(x) =(xP(x)∧yQ(y))∨zR(z) =xyz((P(x)∧Q(y))∨R(z)) 9.设R是集合A={a,b,c,d}.R是A上的二元关系,R={(a,b),(b,a),(b,c),(c,d)}, (1)求出r(R),s(R),t(R); r(R)=R∪IA={(a,b),(b,a),(b,c),(c,d),(a,a),(b,b),(c,c),(d,d)}, s(R)=R∪R-1={(a,b),(b,a),(b,c),(c,b)(c,d),(d,c)}, t(R)=R∪R2∪R3∪R4={(a,a),(a,b),(a,c),(a,d),(b,a),(b,b),(b,c),(b,d),(c,d)}; (2)画出r(R),s(R),t(R)的关系图. 11.通过求主析取式判断下列命题公式是否等价: (1)G=(P∧Q)∨(P∧Q∧R) (2)H=(P∨(Q∧R))∧(Q∨(P∧R)) G=(P∧Q)∨(P∧Q∧R) =(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 试题 答案